The ability to automatically delineate individual tree crowns using remote sensing data opens the possibility to collect detailed tree information over large geographic regions. While individual tree crown delineation (ITCD) methods have proven successful in conifer-dominated forests using Light Detection and Ranging (LiDAR) data, it remains unclear how well these methods can be applied in deciduous broadleaf-dominated forests. We applied five automated LiDAR-based ITCD methods across fifteen plots ranging from conifer- to broadleaf-dominated forest stands at Harvard Forest in Petersham, MA, USA, and assessed accuracy against manual delineation of crowns from unmanned aerial vehicle (UAV) imagery. We then identified tree- and plot-level factors influencing the success of automated delineation techniques. There was relatively little difference in accuracy between automated crown delineation methods (51–59% aggregated plot accuracy) and, despite parameter tuning, none of the methods produced high accuracy across all plots (27—90% range in plot-level accuracy). The accuracy of all methods was significantly higher with increased plot conifer fraction, and individual conifer trees were identified with higher accuracy (mean 64%) than broadleaf trees (42%) across methods. Further, while tree-level factors (e.g., diameter at breast height, height and crown area) strongly influenced the success of crown delineations, the influence of plot-level factors varied. The most important plot-level factor was species evenness, a metric of relative species abundance that is related to both conifer fraction and the degree to which trees can fill canopy space. As species evenness decreased (e.g., high conifer fraction and less efficient filling of canopy space), the probability of successful delineation increased. Overall, our work suggests that the tested LiDAR-based ITCD methods perform equally well in a mixed temperate forest, but that delineation success is driven by forest characteristics like functional group, tree size, diversity, and crown architecture. While LiDAR-based ITCD methods are well suited for stands with distinct canopy structure, we suggest that future work explore the integration of phenology and spectral characteristics with existing LiDAR as an approach to improve crown delineation in broadleaf-dominated stands.
more »
« less
A Deterministic Topographic Wetland Index Based on LiDAR-Derived DEM for Delineating Open-Water Wetlands
Wetlands play a significant role in flood mitigation. Remote sensing technologies as an efficient and accurate approach have been widely applied to delineate wetlands. Supervised classification is conventionally applied for remote sensing technologies to improve the wetland delineation accuracy. However, performing supervised classification requires preparing the training data, which is also considered time-consuming and prone to human mistakes. This paper presents a deterministic topographic wetland index to delineate wetland inundation areas without performing supervised classification. The classic methods such as Normalized Difference Vegetation Index, Normalized Difference Water Index, and Topographic Wetness Index were chosen to compare with the proposed deterministic topographic method on wetland delineation accuracy. The ground truth sample points validated by Google satellite imageries from four different years were used for the assessment of the delineation overall accuracy. The results show that the proposed deterministic topographic wetland index has the highest overall accuracy (98.90%) and Kappa coefficient (0.641) among the selected approaches in this study. The findings of this paper will provide an alternative approach for delineating wetlands rapidly by using solely the LiDAR-derived Digital Elevation Model.
more »
« less
- Award ID(s):
- 1820778
- PAR ID:
- 10347140
- Date Published:
- Journal Name:
- Water
- Volume:
- 13
- Issue:
- 18
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 2487
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Vegetation is a key component controlling soil accretion in coastal wetlands through production of belowground organic matter and enhanced deposition of mineral sediments. Vegetation structure is a proxy for wetland health and degradation that can be monitored at large scales with remote sensing. Among different multispectral indices, the Normalized Difference Vegetation Index (NDVI) is generally used for this purpose. Using Google Earth Engine (GEE), NDVI time‐series are extracted around 45 monitoring stations of the Coastwide Reference Monitoring System (CRMS) located in Terrebonne Bay, Louisiana, USA. NDVI tends to increase from saline to freshwater wetlands. Using these NDVI observations and in situ measurements of salinity, soil accretion rates, and geomorphic metrics (i.e., elevation, distance from the bay or from the nearest channel bank), empirical models were developed to derive maps of organic mass accumulation rates and salinity. The analysis shows that NDVI can be used to reproduce the salinity gradient in Terrebonne Bay, as the index captures differences in vegetation cover, which depend on salinity. A negative relationship between NDVI and organic accumulation mass rates is also found, indicating that saline marshes tend to accumulate more organic material compared to fresh wetlands.more » « less
-
null (Ed.)Mapping invasive vegetation species in arid regions is a critical task for managing water resources and understanding threats to ecosystem services. Traditional remote sensing platforms, such as Landsat and MODIS, are ill-suited for distinguishing native and non-native vegetation species in arid regions due to their large pixels compared to plant sizes. Unmanned aircraft systems, or UAS, offer the potential to capture the high spatial resolution imagery needed to differentiate species. However, in order to extract the most benefits from these platforms, there is a need to develop more efficient and effective workflows. This paper presents an integrated spectral–structural workflow for classifying invasive vegetation species in the Lower Salt River region of Arizona, which has been the site of fires and flooding, leading to a proliferation of invasive vegetation species. Visible (RGB) and multispectral images were captured and processed following a typical structure from motion workflow, and the derived datasets were used as inputs in two machine learning classifications—one incorporating only spectral information and one utilizing both spectral data and structural layers (e.g., digital terrain model (DTM) and canopy height model (CHM)). Results show that including structural layers in the classification improved overall accuracy from 80% to 93% compared to the spectral-only model. The most important features for classification were the CHM and DTM, with the blue band and two spectral indices (normalized difference water index (NDWI) and normalized difference salinity index (NDSI)) contributing important spectral information to both models.more » « less
-
Abstract. The coastal area of New Hanover County in North Carolina encompasses diverse wetland habitats influenced by unique coastal and tidal dynamics, with researchers examining the impacts of landscape changes, sea-level rise, and climate fluctuations on wetland health and biodiversity. This study integrates multispectral imagery data, LiDAR, and additional sources to enhance classification accuracy. The study also addresses binary classification for wetland and non-wetland classification and a multi-classification for different wetland classes, leveraging on the Random Forest algorithm which significantly improved the overall accuracy of wetland mapping. The Random Forest model’s performance in different scenarios was evaluated, with Scenario 1 achieving an overall accuracy of nearly 93.9%, Scenario 2 achieving an overall accuracy of 93.5%, Scenario 3 achieving an overall accuracy of 94.1%, and Scenario 4 achieving an overall accuracy of 88.2%. These results underscore the model’s effectiveness in accurately classifying coastal wetland areas under diverse remote sensing scenarios, highlighting its potential for practical applications in wetland mapping and ecological research.more » « less
-
null (Ed.)In recent years, there have been rapid improvements in both remote sensing methods and satellite image availability that have the potential to massively improve burn severity assessments of the Alaskan boreal forest. In this study, we utilized recent pre- and post-fire Sentinel-2 satellite imagery of the 2019 Nugget Creek and Shovel Creek burn scars located in Interior Alaska to both assess burn severity across the burn scars and test the effectiveness of several remote sensing methods for generating accurate map products: Normalized Difference Vegetation Index (NDVI), Normalized Burn Ratio (NBR), and Random Forest (RF) and Support Vector Machine (SVM) supervised classification. We used 52 Composite Burn Index (CBI) plots from the Shovel Creek burn scar and 28 from the Nugget Creek burn scar for training classifiers and product validation. For the Shovel Creek burn scar, the RF and SVM machine learning (ML) classification methods outperformed the traditional spectral indices that use linear regression to separate burn severity classes (RF and SVM accuracy, 83.33%, versus NBR accuracy, 73.08%). However, for the Nugget Creek burn scar, the NDVI product (accuracy: 96%) outperformed the other indices and ML classifiers. In this study, we demonstrated that when sufficient ground truth data is available, the ML classifiers can be very effective for reliable mapping of burn severity in the Alaskan boreal forest. Since the performance of ML classifiers are dependent on the quantity of ground truth data, when sufficient ground truth data is available, the ML classification methods would be better at assessing burn severity, whereas with limited ground truth data the traditional spectral indices would be better suited. We also looked at the relationship between burn severity, fuel type, and topography (aspect and slope) and found that the relationship is site-dependent.more » « less
An official website of the United States government

