skip to main content

This content will become publicly available on February 24, 2023

Title: Revisiting the non-fluorescence of nitroaromatics: presumption versus reality
The electronically excited singlet states of nitroaromatic compounds are often presumed to be essentially non-fluorescent. Nonetheless, a growing number of reports in the literature have demonstrated that certain structural types of nitroaromatics can indeed fluoresce, and often quite efficiently. Consideration of the mechanisms responsible for the typical fast or ultrafast non-radiative deactivation of the excited singlet states of nitroaromatics points to several general principles for their design that combine the strong electron-withdrawing properties of the nitro group with reasonable fluorescence quantum yields. An overview of published examples of fluorescent nitroaromatics emphasizes these concepts in the context of the importance of chromophore architecture and conformation and the defining roles of excited state charge transfer and solvent polarity in modulating the non-radiative decay channels that compete with fluorescence. Overcoming the stigma that nitroaromatics are intrinsically destined to be non-fluorescent thus paves the way for incorporating the strongly electron-withdrawing nitro group into the existing toolbox for the development of new nitro-substituted fluorophores and chromophores tuned to specific applications.
Authors:
; ; ; ; ;
Award ID(s):
1800602
Publication Date:
NSF-PAR ID:
10347214
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
8
Page Range or eLocation-ID:
2870 to 2904
ISSN:
2050-7526
Sponsoring Org:
National Science Foundation
More Like this
  1. Nitroaromatics seldom fluoresce. The importance of electron-deficient (n-type) conjugates, however, has inspired a number of strategies for suppressing the emission-quenching effects of the strongly electron-withdrawing nitro group. Here, we demonstrate how such strategies yield fluorescent nitroaryl derivatives of dipyrrolonaphthyridinedione (DPND). Nitro groups near the DPND core quench its fluorescence. Conversely, nitro groups placed farther from the core allow some of the highest fluorescence quantum yields ever recorded for nitroaromatics. This strategy of preventing the known processes that compete with photoemission, however, leads to the emergence of unprecedented alternative mechanisms for fluorescence quenching, involving transitions to dark nπ* singlet states and aborted photochemistry. Forming nπ* triplet states from ππ* singlets is a classical pathway for fluorescence quenching. In nitro-DPNDs, however, these ππ* and nπ* excited states are both singlets, and they are common for nitroaryl conjugates. Understanding the excited-state dynamics of such nitroaromatics is crucial for designing strongly fluorescent electron-deficient conjugates.
  2. Abstract

    Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor–donor–acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of thebis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.

  3. Functionalizing deprotonated polycyclic aromatic hydrocarbon (PAH) anion derivatives gives rise to electronically excited states in the resulting anions. While functionalization with −OH and −C 2 H, done presently, does not result in the richness of electronically excited states as it does with −CN done previously, the presence of dipole-bound excited states and even some valence excited states are predicted in this quantum chemical analysis. Most notably, the more electron withdrawing −C 2 H group leads to valence excited states once the number of rings in the molecule reaches three. Dipole-bound excited states arise when the dipole moment of the corresponding neutral radical is large enough (likely around 2.0 D), and this is most pronounced when the hydrogen atom is removed from the functional group itself regardless of whether functionalized by a hydroxyl or enthynyl group. Deprotonatation of the hydroxyl group in the PAH creates a ketone with a delocalized highest occupied molecular orbital (HOMO) unlike deprotonation of a hydrogen on the ring where a localized lone pair on one of the carbon atoms serves as the HOMO. As a result, hydroxyl functionlization and subsequent deprotonation of PAHs creates molecules that begin to exhibit structures akin to nucleic acids. However, themore »electron withdrawing −C 2 H has more excited states than the electron donating −OH functionalized PAH. This implies that the −C 2 H electron withdrawing group can absorb a larger energy range of photons, which signifies an increasing likelihood of being stabilized in the harsh conditions of the interstellar medium.« less
  4. Nitro-functionalized metal–organic frameworks (MOFs), such as Al-MIL-53-NO 2 , have been widely used in quantitative hydrogen sulfide (H 2 S) detection based on the “turn-on” effect, where fluorescence enhancements were observed upon contact with H 2 S. This was believed to be caused by the fact that the electron-withdrawing –NO 2 groups in the initial non-luminescent MOFs were reduced to electron-donating –NH 2 groups in the sensing process. However, since most H 2 S detection is conducted in a suspension system consisting of MOFs and solvents, it is still unclear whether these –NH 2 groups are on MOFs or in the liquid. Using Al-MIL-53-NO 2 as a model MOF, this work aims to answer this question. Specifically, the supernatant and undissolved particles separated from the Al-MIL-53-NO 2 suspensions after being exposed to H 2 S were analyzed systematically. The results showed that it is the free BDC-NH 2 (2-aminobenzene-1,4-dicarboxylic acid) in the solution rather than the formation of Al-MIL-53-NH 2 that really caused the fluorescence enhancement. In particular, the formed BDC-NH 2 was reduced from the shedded BDC-NO 2 (2-nitrobenzene-1,4-dicarboxylic acid) during the decomposition of Al-MIL-53-NO 2 , which was attacked by OH − in the NaHS solution. We anticipatemore »that this work will offer new ways of tracing fluorophores for MOF-based sensing applications in aqueous systems.« less
  5. Enhanced green fluorescent protein (EGFP)—one of the most widely applied genetically encoded fluorescent probes—carries the threonine-tyrosine-glycine (TYG) chromophore. EGFP efficiently undergoes green-to-red oxidative photoconversion (“redding”) with electron acceptors. Enhanced yellow fluorescent protein (EYFP), a close EGFP homologue (five amino acid substitutions), has a glycine-tyrosine-glycine (GYG) chromophore and is much less susceptible to redding, requiring halide ions in addition to the oxidants. In this contribution we aim to clarify the role of the first chromophore-forming amino acid in photoinduced behavior of these fluorescent proteins. To that end, we compared photobleaching and redding kinetics of EGFP, EYFP, and their mutants with reciprocally substituted chromophore residues, EGFP-T65G and EYFP-G65T. Measurements showed that T65G mutation significantly increases EGFP photostability and inhibits its excited-state oxidation efficiency. Remarkably, while EYFP-G65T demonstrated highly increased spectral sensitivity to chloride, it is also able to undergo redding chloride-independently. Atomistic calculations reveal that the GYG chromophore has an increased flexibility, which facilitates radiationless relaxation leading to the reduced fluorescence quantum yield in the T65G mutant. The GYG chromophore also has larger oscillator strength as compared to TYG, which leads to a shorter radiative lifetime (i.e., a faster rate of fluorescence). The faster fluorescence rate partially compensates for the loss ofmore »quantum efficiency due to radiationless relaxation. The shorter excited-state lifetime of the GYG chromophore is responsible for its increased photostability and resistance to redding. In EYFP and EYFP-G65T, the chromophore is stabilized by π-stacking with Tyr203, which suppresses its twisting motions relative to EGFP.« less