skip to main content


Title: Decoupling the metal–insulator transition temperature and hysteresis of VO 2 using Ge alloying and oxygen vacancies
The metal-to-insulator transition of VO 2 underpins applications in thermochromics, neuromorphic computing, and infrared vision. Ge alloying is shown to elevate the transition temperature by promoting V–V dimerization, thereby expanding the stability of the monoclinic phase to higher temperatures. By suppressing the propensity for oxygen vacancy formation, Ge alloying renders the hysteresis of the transition exquisitely sensitive to oxygen stoichiometry.  more » « less
Award ID(s):
1545403
NSF-PAR ID:
10347281
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
58
Issue:
46
ISSN:
1359-7345
Page Range / eLocation ID:
6586 to 6589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Engineering electronic bandgaps is crucial for applications in information technology, sensing, and renewable energy. Transition metal dichalcogenides (TMDCs) offer a versatile platform for bandgap modulation through alloying, doping, and heterostructure formation. Here, the synthesis of a 2D MoxW1‐xS2graded alloy is reported, featuring a Mo‐rich center that transitions to W‐rich edges, achieving a tunable bandgap of 1.85 to 1.95 eV when moving from the center to the edge of the flake. Aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy showed the presence of sulfur monovacancy, VS, whose concentration varied across the graded MoxW1‐xS2layer as a function of Mo content with the highest value in the Mo‐rich center region. Optical spectroscopy measurements supported by ab initio calculations reveal a doublet electronic state of VS, which is split due to the spin‐orbit interaction, with energy levels close to the conduction band or deep in the bandgap depending on whether the vacancy is surrounded by W atoms or Mo atoms. This unique electronic configuration of VSin the alloy gave rise to four spin‐allowed optical transitions between the VSlevels and the valence bands. The study demonstrates the potential of defect and optical engineering in 2D monolayers for advanced device applications.

     
    more » « less
  2. null (Ed.)
    In this work, nine nanocrystalline binary Mg alloys were synthesized by high-energy ball milling. The compositions, Mg-5 wt% M (M-Cr, Ge, Mn, Mo, Ta, Ti, V, Y, and Zn), were milled with the objective of achieving non-equilibrium alloying. The milled alloys were consolidated via cold compaction (CC) at 25°C and spark plasma sintering (SPS) at 300°C. X-ray diffraction (XRD) analysis indicated grain refinement below 100 nm, and the scanning electron microscopy revealed homogeneous microstructures for all compositions. XRD analysis revealed that most of the alloys showed a change in the lattice parameter, which indicates the formation of a solid solution. A significant increase in the hardness compared to unmilled Mg was observed for all of the alloys. The corrosion behavior was improved in all of the binary alloys compared to milled Mg. A significant decrease in the cathodic kinetics was evident due to Ge and Zn additions. The influence of the alloying elements on corrosion behavior has been categorized and discussed based on the electrochemical response of their respective binary Mg alloys. 
    more » « less
  3. Abstract

    Magnetic skyrmions are topologically protected spin textures that are being investigated for their potential use in next generation magnetic storage devices. Here, magnetic skyrmions and other magnetic phases in Fe1−xCoxGe (x< 0.1) microplates (MPLs) newly synthesized via chemical vapor deposition are studied using both magnetic imaging and transport measurements. Lorentz transmission electron microscopy reveals a stabilized magnetic skyrmion phase near room temperature (≈280 K) and a quenched metastable skyrmion lattice via field cooling. Magnetoresistance (MR) measurements in three different configurations reveal a unique anomalous MR signal at temperatures below 200 K and two distinct field dependent magnetic transitions. The topological Hall effect (THE), known as the electronic signature of magnetic skyrmion phase, is detected for the first time in a Fe1−xCoxGe nanostructure, with a large and positive peak THE resistivity of ≈32 nΩ cm at 260 K. This large magnitude is attributed to both nanostructuring and decreased carrier concentrations due to Co alloying of the Fe1−xCoxGe MPL. A consistent magnetic phase diagram summarized from both the magnetic imaging and transport measurements shows that the magnetic skyrmions are stabilized in Fe1−xCoxGe MPLs compared to bulk materials. This study lays the foundation for future skyrmion‐based nanodevices in information storage technologies.

     
    more » « less
  4. Abstract

    Reactions of the IrVhydride [MeBDIDipp]IrH4{BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6‐iPr2C6H3} with E[N(SiMe3)2]2(E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([MeBDIDipp]IrH)2(μ2‐E)2in good yields. Moreover, ([MeBDIDipp]IrH)2(μ2‐Ge)2was formed in situ from thermal decomposition of [MeBDIDipp]Ir(H)2Ge[N(SiMe3)2]2. These reactions are accompanied by liberation of HN(SiMe3)2and H2through the apparent cleavage of an E−N(SiMe3)2bond by Ir−H. In a reversal of this process, ([MeBDIDipp]IrH)2(μ2‐E)2reacted with excess H2to regenerate [MeBDIDipp]IrH4. Varying the concentrations of reactants led to formation of the trimeric ([MeBDIDipp]IrH2)3(μ2‐E)3. The further scope of this synthetic route was investigated with group 15 amides, and ([MeBDIDipp]IrH)2(μ2‐Bi)2was prepared by the reaction of [MeBDIDipp]IrH4with Bi(NMe2)3or Bi(OtBu)3to afford the first example of a “naked” two‐coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2E2(E=Sn, Pb) compounds characterized them as open‐shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2Bi2is characterized as having a closed‐shell singlet ground state.

     
    more » « less
  5. Abstract

    A β‐FeSi2–SiGe nanocomposite is synthesized via a react/transform spark plasma sintering technique, in which eutectoid phase transformation, Ge alloying, selective doping, and sintering are completed in a single process, resulting in a greatly reduced process time and thermal budget. Hierarchical structuring of the SiGe secondary phase to achieve coexistence of a percolated network with isolated nanoscale inclusions effectively decouples the thermal and electrical transport. Combined with selective doping that reduces conduction band offsets, the percolation strategy produces overall electron mobilities 30 times higher than those of similar materials produced using typical powder‐processing routes. As a result, a maximum thermoelectric figure of meritZTof ≈0.7 at 700 °C is achieved in the β‐FeSi2–SiGe nanocomposite.

     
    more » « less