skip to main content


Title: Electric fields and substrates dramatically accelerate spin relaxation in graphene
Electrons in graphene are theoretically expected to retain spin states much longer than most materials, making graphene a promising platform for spintronics and quantum information technologies. Here, we use first-principles density-matrix (FPDM) dynamics simulations to show that interaction with electric fields and substrates strongly enhances spin relaxation through scattering with phonons. Consequently, the relaxation time at room temperature reduces from microseconds in free-standing graphene to nanoseconds in graphene on the hexagonal boron nitride (hBN) substrate, which is the order of magnitude typically measured in experiments. Further, inversion symmetry breaking by hBN introduces a stronger asymmetry in electron and hole spin lifetimes than predicted by the conventional D'yakonov-Perel' (DP) model for spin relaxation. Deviations from the conventional DP model are stronger for in-plane spin relaxation, resulting in out-of-plane to in-plane lifetime ratios much greater than 1/2 with a maximum close to the Dirac point. These FPDM results, independent of symmetry-specific assumptions or material-dependent parameters, also validate recent modifications of the DP model to explain such deviations. Overall, our results indicate that spin-phonon relaxation in the presence of substrates may be more important in graphene than typically assumed, requiring consideration for graphene-based spin technologies at room temperature.  more » « less
Award ID(s):
1956015
NSF-PAR ID:
10347316
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical review
Volume:
105
ISSN:
2469-9985
Page Range / eLocation ID:
115122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuum mechanics break down in bending stiffness calculations of mono- and few-layered two-dimensional (2D) van der Waals crystal sheets, because their layered atomistic structures are uniquely characterized by strong in-plane bonding coupled with weak interlayer interactions. Here, we elucidate how the bending rigidities of pristine mono- and few-layered molybdenum disulfide (MoS 2 ), graphene, and hexagonal boron nitride (hBN) are governed by their structural geometry and intra- and inter-layer bonding interactions. Atomic force microscopy experiments on the self-folded conformations of these 2D materials on flat substrates show that the bending rigidity of MoS 2 significantly exceeds those of graphene or hBN of comparable layers, despite its much lower tensile modulus. Even on a per-thickness basis, MoS 2 is found to possess similar bending stiffness to hBN and is much stiffer than graphene. Density functional theory calculations suggest that this high bending rigidity of MoS 2 is due to its large interlayer thickness and strong interlayer shear, which prevail over its weak in-plane bonding. 
    more » « less
  2. High mobility is a crucial requirement for a large variety of electronic device applications. The state of the art for high-quality graphene devices is based on heterostructures made with graphene encapsulated in >40 nm-thick flakes of hexagonal boron nitride (hBN). Unfortunately, scaling up multilayer hBN while precisely controlling the number of layers remains an outstanding challenge, resulting in a rough material unable to enhance the mobility of graphene. This leads to the pursuit of alternative, scalable materials, which can be used as substrates and encapsulants for graphene. Tungsten disulfide (WS2) is a transition metal dichalcogenide, which was grown in large (∼mm-size) multi-layers by chemical vapor deposition. However, the resistance vs gate voltage characteristics when gating graphene through WS2 exhibit largely hysteretic shifts of the charge neutrality point on the order of Δn∼ 3 × 1011 cm−2, hindering the use of WS2 as a reliable encapsulant. The hysteresis originates due to the charge traps from sulfur vacancies present in WS2. In this work, we report the use of WS2 as a substrate and overcome the hysteresis issues by chemically treating WS2 with a super-acid, which passivates these vacancies and strips the surface from contaminants. The hysteresis is significantly reduced by about two orders of magnitude, down to values as low as Δn∼ 2 × 109 cm−2, while the room-temperature mobility of WS2-encapsulated graphene is as high as ∼62 × 103 cm2 V−1 s−1 at a carrier density of n ∼ 1 ×1012 cm−2. Our results promote WS2 as a valid alternative to hBN as an encapsulant for high-performance graphene devices.

     
    more » « less
  3. At partial fillings of its flat electronic bands, magic-angle twisted bilayer graphene (MATBG) hosts a rich variety of competing correlated phases that show sample-to-sample variations. Divergent phase diagrams in MATBG are often attributed to the sublattice polarization energy scale, tuned by the degree of alignment of the hexagonal boron nitride (hBN) substrates typically used in van der Waals devices. Unaligned MATBG exhibits unconventional superconductor and correlated insulator phases, while nearly perfectly aligned MATBG/hBN exhibits zero-field Chern insulating phases and lacks superconductivity. Here we use scanning tunneling microscopy and spectroscopy (STM/STS) to observe gapped phases at partial fillings of the flat bands of MATBG in a new intermediate regime of sublattice polarization, observed when MATBG is only partially aligned (θGr-hBN ≈ 1.65°) to the underlying hBN substrate. Under this condition, MATBG hosts not only phenomena that naturally interpolate between the two sublattice potential limits, but also unexpected gapped phases absent in either of these limits. At charge neutrality, we observe an insulating phase with a small energy gap (Δ < 5 meV) likely related to weak sublattice symmetry breaking from the hBN substrate. In addition, we observe new gapped phases near fractional fillings ν = ±1/3 and ν = ±1/6, which have not been previously observed in MATBG. Importantly, energy-resolved STS unambiguously identifies these fractional filling states to be of single-particle origin, possibly a result of the super-superlattice formed by two moiré superlattices. Our observations emphasize the power of STS in distinguishing single-particle gapped phases from many-body gapped phases in situations that could be easily confused in electrical transport measurements, and demonstrate the use of substrate engineering for modifying the electronic structure of a moiré flat-band material. 
    more » « less
  4.  
    more » « less
  5. Abstract

    The recently discovered spin-active boron vacancy (V$${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$B) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at room-temperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the ground-state. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital ground- and excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is suggestive of symmetry-lowering of the defect system fromD3htoC2v. Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing.

     
    more » « less