This content will become publicly available on June 1, 2023
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10381313
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 662
- Page Range or eLocation-ID:
- A60
- ISSN:
- 0004-6361
- Sponsoring Org:
- National Science Foundation
More Like this
-
We present a multiline survey of the interstellar medium (ISM) in two z > 6 quasar host galaxies, PJ231−20 ( z = 6.59) and PJ308−21 ( z = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up = 7, 10, 15, 16), H 2 O 3 12 − 2 21 , 3 21 − 3 12 , 3 03 − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J COmore »
-
Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02 − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1 − 0 1 ), (1 2 − 0 1 ), and (1 0 − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02 − 1 11 ) and (2 20 − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2 − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement ofmore »
-
Abstract We report the detection of the CO(12–11) line emission toward G09-83808 (or H-ATLAS J090045.4+004125), a strongly-lensed submillimeter galaxy at z = 6.02, with Atacama Large Millimeter/submillimeter Array observations. Combining previously detected [O iii] 88 μm, [N ii] 205 μm, and dust continuum at 0.6 mm and 1.5 mm, we investigate the physical properties of the multi-phase interstellar medium in G09-83808. A source-plane reconstruction reveals that the region of the CO(12–11) emission is compact ($R_\mathrm{{e, CO}}=0.49^{+0.29}_{-0.19}\:\mbox{kpc}$) and roughly coincides with that of the dust continuum. Non-local thermodynamic equilibrium radiative transfer modeling of CO spectral-line energy distribution reveals that most of the CO(12–11) emission comes from a warm (kinetic temperature of Tkin = 320 ± 170 K) and dense [log (nH2/cm−3) = 5.4 ± 0.6] gas, indicating that the warm and dense molecular gas is concentrated in the central 0.5 kpc region. The luminosity ratio in G09-83808 is estimated to be LCO(12-11)/LCO(6-5) = 1.1 ± 0.2. The high ratio is consistent with those in local active galactic nuclei (AGNs) and 6 < z < 7 quasars, the fact of which implies that G09-83808 would be a good target to explore dust-obscured AGNs in the epoch of reionization. In the reconstructed [O iii] 88 μm and [N ii] 205 μm cubes, we also find that a monotonic velocity gradientmore »
-
We use a combination of new NOrthern Extended Millimeter Array (NOEMA) observations of the pair of [CI] transitions, the CO(7-6) line, and the dust continuum, in addition to ancillary CO(1-0) and CO(3-2) data, to study the molecular gas properties of Q1700-MD94. This is a massive, main-sequence galaxy at z ≈ 2. We find that for a reasonable set of assumptions for a typical massive star-forming galaxy, the CO(1-0), the [CI](1-0) and the dust continuum yield molecular gas masses that are consistent within a factor of ∼2. The global excitation properties of the molecular gas as traced by the [CI] and CO transitions are similar to those observed in other massive star-forming galaxies at z ∼ 2. Our large velocity gradient modeling using RADEX of the CO and [CI] spectral line energy distributions suggests the presence of relatively warm ( T kin = 41 K), dense ( n H 2 = 8 × 10 3 cm −3 ) molecular gas, comparable to the high-excitation molecular gas component observed in main-sequence star-forming galaxies at z ∼ 1. The galaxy size in the CO(1-0) and CO(7-6) line emission is comparable, which suggests that the highly excited molecular gas is distributed throughout the disk, powered by intense star formation activity. Amore »
-
The [C II ] 158 μ m line is one of the strongest IR emission lines, which has been shown to trace the star formation rate (SFR) of galaxies in the nearby Universe, and up to z ∼ 2. Whether this is also the case at higher redshift and in the early Universe remains debated. The ALPINE survey, which targeted 118 star-forming galaxies at 4.4 < z < 5.9, provides a new opportunity to examine this question with the first statistical dataset. Using the ALPINE data and earlier measurements from the literature, we examine the relation between the [C II ] luminosity and the SFR over the entire redshift range from z ∼ 4 − 8. ALPINE galaxies, which are both detected in [C II ] and in dust continuum, show good agreement with the local L ([CII])–SFR relation. Galaxies undetected in the continuum by ALMA are found to be over-luminous in [C II ] when the UV SFR is used. After accounting for dust-obscured star formation, by an amount of SFR(IR) ≈ SFR(UV) on average, which results from two different stacking methods and SED fitting, the ALPINE galaxies show an L ([CII])–SFR relation comparable to the local one. When [C II ] non-detectionsmore »