skip to main content

This content will become publicly available on June 1, 2023

Title: Molecular gas in z ∼ 6 quasar host galaxies
We investigate the molecular gas content of z  ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C  I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C  II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z  ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust  ∼ 47 K and an optical depth τ ν  = 0.2 at the [C  II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C  I ], or more » [C  II ] emission yields mass estimates of the entire sample in the range M H2  ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C  II ], [C  I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H  > 10 4 cm −3 ) clouds with a column density N H  ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0  ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z  ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Award ID(s):
1908284 1910107
Publication Date:
NSF-PAR ID:
10381313
Journal Name:
Astronomy & Astrophysics
Volume:
662
Page Range or eLocation-ID:
A60
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a multiline survey of the interstellar medium (ISM) in two z  > 6 quasar host galaxies, PJ231−20 ( z  = 6.59) and PJ308−21 ( z  = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up  = 7, 10, 15, 16), H 2 O 3 12  − 2 21 , 3 21  − 3 12 , 3 03  − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J COmore »excitation in both quasar hosts. Our CO SLED modeling of the quasar PJ231−20 shows that PDRs dominate the molecular mass and CO luminosities for J up  ≤ 7, while the J up  ≥ 10 CO emission is likely driven by X-ray dissociation regions produced by the active galactic nucleus (AGN) at the very center of the quasar host. The J up  > 10 lines are undetected in the other galaxies in our study. The H 2 O 3 21  − 3 12 line detection in the same quasar places this object on the L H 2 O  −  L TIR relation found for low- z sources, thus suggesting that this water vapor transition is predominantly excited by IR pumping. Models of the H 2 O SLED and of the H 2 O-to-OH 163 μm ratio point to PDR contributions with high volume and column density ( n H  ∼ 0.8 × 10 5 cm −3 , N H  = 10 24 cm −2 ) in an intense radiation field. Our analysis suggests a less highly excited medium in the companion galaxies. However, the current data do not allow us to definitively rule out an AGN in these sources, as suggested by previous studies of the same objects. This work demonstrates the power of multiline studies of FIR diagnostics in order to dissect the physical conditions in the first massive galaxies emerging from cosmic dawn.« less
  2. Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02  − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1  − 0 1 ), (1 2  − 0 1 ), and (1 0  − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02  − 1 11 ) and (2 20  − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2  − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement ofmore »the total mass of molecular gas and an anchor for a CO excitation analysis. In addition, we present Hubble Space Telescope imaging that reveals the foreground lensing galaxy in the near-infrared (1.15  μ m). Together with photometric data from the Gran Telescopio Canarias, we derive a photometric redshift of z phot = 0.9 −0.5 +0.3 for the foreground lensing galaxy. Modeling the lensing of HerBS-89a, we reconstruct the dust continuum (magnified by a factor μ  ≃ 5.0) and molecular emission lines (magnified by μ  ∼ 4 − 5) in the source plane, which probe scales of ∼0 . ″1 (or 800 pc). The 12 CO(9 − 8) and H 2 O(2 02  − 1 11 ) emission lines have comparable spatial and kinematic distributions; the source-plane reconstructions do not clearly distinguish between a one-component and a two-component scenario, but the latter, which reveals two compact rotating components with sizes of ≈1 kpc that are likely merging, more naturally accounts for the broad line widths observed in HerBS-89a. In the core of HerBS-89a, very dense gas with n H 2  ∼ 10 7 − 9 cm −3 is revealed by the NH 2 emission lines and the possible HCN(11 − 10) absorption line. HerBS-89a is a powerful star forming galaxy with a molecular gas mass of M mol  = (2.1 ± 0.4) × 10 11   M ⊙ , an infrared luminosity of L IR  = (4.6 ± 0.4) × 10 12   L ⊙ , and a dust mass of M dust  = (2.6 ± 0.2) × 10 9   M ⊙ , yielding a dust-to-gas ratio δ GDR  ≈ 80. We derive a star formation rate SFR = 614 ± 59  M ⊙ yr −1 and a depletion timescale τ depl  = (3.4 ± 1.0) × 10 8 years. The OH + and CH + absorption lines, which trace low (∼100 cm −3 ) density molecular gas, all have their main velocity component red-shifted by Δ V  ∼ 100 km s −1 relative to the global CO reservoir. We argue that these absorption lines trace a rare example of gas inflow toward the center of a galaxy, indicating that HerBS-89a is accreting gas from its surroundings.« less
  3. Abstract

    We report the detection of the CO(12–11) line emission toward G09-83808 (or H-ATLAS J090045.4+004125), a strongly-lensed submillimeter galaxy at z = 6.02, with Atacama Large Millimeter/submillimeter Array observations. Combining previously detected [O iii] 88 μm, [N ii] 205 μm, and dust continuum at 0.6 mm and 1.5 mm, we investigate the physical properties of the multi-phase interstellar medium in G09-83808. A source-plane reconstruction reveals that the region of the CO(12–11) emission is compact ($R_\mathrm{{e, CO}}=0.49^{+0.29}_{-0.19}\:\mbox{kpc}$) and roughly coincides with that of the dust continuum. Non-local thermodynamic equilibrium radiative transfer modeling of CO spectral-line energy distribution reveals that most of the CO(12–11) emission comes from a warm (kinetic temperature of Tkin = 320 ± 170 K) and dense [log (nH2/cm−3) = 5.4 ± 0.6] gas, indicating that the warm and dense molecular gas is concentrated in the central 0.5 kpc region. The luminosity ratio in G09-83808 is estimated to be LCO(12-11)/LCO(6-5) = 1.1 ± 0.2. The high ratio is consistent with those in local active galactic nuclei (AGNs) and 6 < z < 7 quasars, the fact of which implies that G09-83808 would be a good target to explore dust-obscured AGNs in the epoch of reionization. In the reconstructed [O iii] 88 μm and [N ii] 205 μm cubes, we also find that a monotonic velocity gradientmore »is extending over the central starburst region by a factor of 2 and that star-forming sub-components exist. High-resolution observations of bright [C ii] 158 μm line emissions will enable us to characterize the kinematics of a possible rotating disk and the nature of the sub-components.

    « less
  4. We use a combination of new NOrthern Extended Millimeter Array (NOEMA) observations of the pair of [CI] transitions, the CO(7-6) line, and the dust continuum, in addition to ancillary CO(1-0) and CO(3-2) data, to study the molecular gas properties of Q1700-MD94. This is a massive, main-sequence galaxy at z  ≈ 2. We find that for a reasonable set of assumptions for a typical massive star-forming galaxy, the CO(1-0), the [CI](1-0) and the dust continuum yield molecular gas masses that are consistent within a factor of ∼2. The global excitation properties of the molecular gas as traced by the [CI] and CO transitions are similar to those observed in other massive star-forming galaxies at z  ∼ 2. Our large velocity gradient modeling using RADEX of the CO and [CI] spectral line energy distributions suggests the presence of relatively warm ( T kin  = 41 K), dense ( n H 2  = 8 × 10 3  cm −3 ) molecular gas, comparable to the high-excitation molecular gas component observed in main-sequence star-forming galaxies at z  ∼ 1. The galaxy size in the CO(1-0) and CO(7-6) line emission is comparable, which suggests that the highly excited molecular gas is distributed throughout the disk, powered by intense star formation activity. Amore »confirmation of this scenario will require spatially resolved observations of the CO and [CI] lines, which can now be obtained with NOEMA upgraded capabilities.« less
  5. The [C  II ] 158 μ m line is one of the strongest IR emission lines, which has been shown to trace the star formation rate (SFR) of galaxies in the nearby Universe, and up to z  ∼ 2. Whether this is also the case at higher redshift and in the early Universe remains debated. The ALPINE survey, which targeted 118 star-forming galaxies at 4.4 <   z  <  5.9, provides a new opportunity to examine this question with the first statistical dataset. Using the ALPINE data and earlier measurements from the literature, we examine the relation between the [C  II ] luminosity and the SFR over the entire redshift range from z  ∼ 4 − 8. ALPINE galaxies, which are both detected in [C  II ] and in dust continuum, show good agreement with the local L ([CII])–SFR relation. Galaxies undetected in the continuum by ALMA are found to be over-luminous in [C  II ] when the UV SFR is used. After accounting for dust-obscured star formation, by an amount of SFR(IR) ≈ SFR(UV) on average, which results from two different stacking methods and SED fitting, the ALPINE galaxies show an L ([CII])–SFR relation comparable to the local one. When [C  II ] non-detectionsmore »are taken into account, the slope may be marginally steeper at high- z , although this is still somewhat uncertain. When compared homogeneously, the z  >  6 [C  II ] measurements (detections and upper limits) do not behave very differently to the z  ∼ 4 − 6 data. We find a weak dependence of L ([CII])/SFR on the Ly α equivalent width. Finally, we find that the ratio L ([CII])/ L IR ∼ (1 − 3) × 10 −3 for the ALPINE sources, comparable to that of “normal” galaxies at lower redshift. Our analysis, which includes the largest sample (∼150 galaxies) of [C  II ] measurements at z  > 4 available so far, suggests no or little evolution of the [C  II ]–SFR relation over the last 13 Gyr of cosmic time.« less