skip to main content

Title: sígame v3: Gas Fragmentation in Postprocessing of Cosmological Simulations for More Accurate Infrared Line Emission Modeling
Abstract We present an update to the framework called Simulator of Galaxy Millimeter/submillimeter Emission ( sígame ). sígame derives line emission in the far-infrared (FIR) for galaxies in particle-based cosmological hydrodynamics simulations by applying radiative transfer and physics recipes via a postprocessing step after completion of the simulation. In this version, a new technique is developed to model higher gas densities by parameterizing the probability distribution function (PDF) of the gas density in higher-resolution simulations run with the pseudo-Lagrangian, Voronoi mesh code arepo . The parameterized PDFs are used as a look-up table, and reach higher densities than in previous work. sígame v3 is tested on redshift z = 0 galaxies drawn from the simba cosmological simulation for eight FIR emission lines tracing vastly different phases of the interstellar medium. This version of sígame includes dust radiative transfer with S kirt and high-resolution photoionization models with C loudy , the latter sampled according to the density PDF of the arepo simulations to augment the densities in the cosmological simulation. The quartile distributions of the predicted line luminosities overlap with the observed range for nearby galaxies of similar star formation rate (SFR) for all but two emission lines: [O i ]63 more » and CO(3–2), which are overestimated by median factors of 1.3 and 1.0 dex, respectively, compared to the observed line–SFR relation of mixed-type galaxies. We attribute the remaining disagreement with observations to the lack of precise attenuation of the interstellar light on sub-grid scales (≲200 pc) and differences in sample selection. « less
Authors:
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1815461
Publication Date:
NSF-PAR ID:
10347550
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
1
Page Range or eLocation-ID:
88
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Hydrogen emission lines can provide extensive information about star-forming galaxies in both the local and high-redshift Universe. We present a detailed Lyman continuum (LyC), Lyman-α (Lyα), and Balmer line (Hα and Hβ) radiative transfer study of a high-resolution isolated Milky Way simulation using the state-of-the-art Arepo-RT radiation hydrodynamics code with the SMUGGLE galaxy formation model. The realistic framework includes stellar feedback, non-equilibrium thermochemistry accounting for molecular hydrogen, and dust grain evolution in the interstellar medium (ISM). We extend our publicly available Cosmic Lyα Transfer (COLT) code with photoionization equilibrium Monte Carlo radiative transfer and various methodology improvements for self-consistent end-to-end (non-)resonant line predictions. Accurate LyC reprocessing to recombination emission requires modelling pre-absorption by dust ($f_\text{abs} \approx 27.5\,\rm{per\,\,cent}$), helium ionization ($f_\text{He} \approx 8.7\,\rm{per\,\,cent}$), and anisotropic escape fractions ($f_\text{esc} \approx 7.9\,\rm{per\,\,cent}$), as these reduce the available budget for hydrogen line emission ($f_\text{H} \approx 55.9\,\rm{per\,\,cent}$). We investigate the role of the multiphase dusty ISM, disc geometry, gas kinematics, and star formation activity in governing the physics of emission and escape, focusing on the time variability, gas-phase structure, and spatial spectral, and viewing angle dependence of the emergent photons. Isolated disc simulations are well-suited for comprehensive observational comparisons with local Hα surveys, butmore »would require a proper cosmological circumgalactic medium (CGM) environment as well as less dust absorption and rotational broadening to serve as analogs for high-redshift Lyα emitting galaxies. Future applications of our framework to next-generation cosmological simulations of galaxy formation including radiation-hydrodynamics that resolve ≲10 pc multiphase ISM and ≲1 kpc CGM structures will provide crucial insights and predictions for current and upcoming Lyα observations.

    « less
  2. ABSTRACT Line intensity mapping (LIM) is rapidly emerging as a powerful technique to study galaxy formation and cosmology in the high-redshift Universe. We present LIM estimates of select spectral lines originating from the interstellar medium (ISM) of galaxies and 21 cm emission from neutral hydrogen gas in the Universe using the large volume, high resolution thesan reionization simulations. A combination of subresolution photoionization modelling for H ii regions and Monte Carlo radiative transfer calculations is employed to estimate the dust-attenuated spectral energy distributions (SEDs) of high-redshift galaxies (z ≳ 5.5). We show that the derived photometric properties such as the ultraviolet (UV) luminosity function and the UV continuum slopes match observationally inferred values, demonstrating the accuracy of the SED modelling. We provide fits to the luminosity–star formation rate relation (L–SFR) for the brightest emission lines and find that important differences exist between the derived scaling relations and the widely used low-z ones because the ISM of reionization era galaxies is generally less metal enriched than in their low-redshift counterparts. We use these relations to construct line intensity maps of nebular emission lines and cross-correlate with the 21 cm emission. Interestingly, the wavenumber at which the correlation switches sign (ktransition) depends heavily on themore »reionization model and to a lesser extent on the targeted emission line, which is consistent with the picture that ktransition probes the typical sizes of ionized regions. The derived scaling relations and intensity maps represent a timely state-of-the-art framework for forecasting and interpreting results from current and upcoming LIM experiments.« less
  3. ABSTRACT

    Interstellar chemistry is important for galaxy formation, as it determines the rate at which gas can cool, and enables us to make predictions for observable spectroscopic lines from ions and molecules. We explore two central aspects of modelling the chemistry of the interstellar medium (ISM): (1) the effects of local stellar radiation, which ionizes and heats the gas, and (2) the depletion of metals on to dust grains, which reduces the abundance of metals in the gas phase. We run high-resolution (400 M⊙ per baryonic particle) simulations of isolated disc galaxies, from dwarfs to Milky Way-mass, using the fire galaxy formation models together with the chimes non-equilibrium chemistry and cooling module. In our fiducial model, we couple the chemistry to the stellar fluxes calculated from star particles using an approximate radiative transfer scheme; and we implement an empirical density-dependent prescription for metal depletion. For comparison, we also run simulations with a spatially uniform radiation field, and without metal depletion. Our fiducial model broadly reproduces observed trends in H i and H2 mass with stellar mass, and in line luminosity versus star formation rate for [C ii]$_{158 \rm {\mu m}}$, [O i]$_{63 \rm {\mu m}}$, [O iii]$_{88 \rm {\mu m}}$, [N ii]$_{122 \rm {\mu m}}$, andmore »H α6563Å. Our simulations with a uniform radiation field predict fainter luminosities, by up to an order of magnitude for [O iii]$_{88 \rm {\mu m}}$ and H α6563Å, while ignoring metal depletion increases the luminosity of carbon and oxygen lines by a factor ≈ 2. However, the overall evolution of the galaxy is not strongly affected by local stellar fluxes or metal depletion, except in dwarf galaxies where the inclusion of local fluxes leads to weaker outflows and hence higher gas fractions.

    « less
  4. ABSTRACT

    Recent years have seen growing interest in post-processing cosmological simulations with radiative transfer codes to predict observable fluxes for simulated galaxies. However, this can be slow, and requires a number of assumptions in cases where simulations do not resolve the interstellar medium (ISM). Zoom-in simulations better resolve the detailed structure of the ISM and the geometry of stars and gas; however, statistics are limited due to the computational cost of simulating even a single halo. In this paper, we make use of a set of high-resolution, cosmological zoom-in simulations of massive ($M_{\star }\gtrsim 10^{10.5}\, \rm {M_{\odot }}$ at z = 2), star-forming galaxies from the FIRE suite. We run the skirt radiative transfer code on hundreds of snapshots in the redshift range 1.5 < z < 5 and calibrate a power-law scaling relation between dust mass, star formation rate, and $870\, \mu \rm {m}$ flux density. The derived scaling relation shows encouraging consistency with observational results from the sub-millimetre-selected AS2UDS sample. We extend this to other wavelengths, deriving scaling relations between dust mass, stellar mass, star formation rate, and redshift and sub-millimetre flux density at observed-frame wavelengths between $\sim \! 340$ and $\sim \! 870\, \mu \rm {m}$. Wemore »then apply the scaling relations to galaxies drawn from EAGLE, a large box cosmological simulation. We show that the scaling relations predict EAGLE sub-millimetre number counts that agree well with previous results that were derived using far more computationally expensive radiative transfer techniques. Our scaling relations can be applied to other simulations and semi-analytical or semi-empirical models to generate robust and fast predictions for sub-millimetre number counts.

    « less
  5. ABSTRACT

    The nebular recombination line H α is widely used as a star formation rate (SFR) indicator in the local and high-redshift Universe. We present a detailed H α radiative transfer study of high-resolution isolated Milky-Way and Large Magellanic Cloud simulations that include radiative transfer, non-equilibrium thermochemistry, and dust evolution. We focus on the spatial morphology and temporal variability of the H α emission, and its connection to the underlying gas and star formation properties. The H α and H β radial and vertical surface brightness profiles are in excellent agreement with observations of nearby galaxies. We find that the fraction of H α emission from collisional excitation amounts to fcol ∼ 5–$10{{\ \rm per\ cent}}$, only weakly dependent on radius and vertical height, and that scattering boosts the H α luminosity by $\sim 40{{\ \rm per\ cent}}$. The dust correction via the Balmer decrement works well (intrinsic H α emission recoverable within 25 per cent), though the dust attenuation law depends on the amount of attenuation itself both on spatially resolved and integrated scales. Important for the understanding of the H α–SFR connection is the dust and helium absorption of ionizing radiation (Lyman continuum [LyC] photons), which are about $f_{\rm abs}\approx 28{{\ \rm per\ cent}}$ and $f_{\rm He}\approx 9{{\ \rmmore »per\ cent}}$, respectively. Together with an escape fraction of $f_{\rm esc}\approx 6{{\ \rm per\ cent}}$, this reduces the available budget for hydrogen line emission by nearly half ($f_{\rm H}\approx 57{{\ \rm per\ cent}}$). We discuss the impact of the diffuse ionized gas, showing – among other things – that the extraplanar H α emission is powered by LyC photons escaping the disc. Future applications of this framework to cosmological (zoom-in) simulations will assist in the interpretation of spectroscopy of high-redshift galaxies with the upcoming James Webb Space Telescope.

    « less