skip to main content

Title: sígame v3: Gas Fragmentation in Postprocessing of Cosmological Simulations for More Accurate Infrared Line Emission Modeling
Abstract We present an update to the framework called Simulator of Galaxy Millimeter/submillimeter Emission ( sígame ). sígame derives line emission in the far-infrared (FIR) for galaxies in particle-based cosmological hydrodynamics simulations by applying radiative transfer and physics recipes via a postprocessing step after completion of the simulation. In this version, a new technique is developed to model higher gas densities by parameterizing the probability distribution function (PDF) of the gas density in higher-resolution simulations run with the pseudo-Lagrangian, Voronoi mesh code arepo . The parameterized PDFs are used as a look-up table, and reach higher densities than in previous work. sígame v3 is tested on redshift z = 0 galaxies drawn from the simba cosmological simulation for eight FIR emission lines tracing vastly different phases of the interstellar medium. This version of sígame includes dust radiative transfer with S kirt and high-resolution photoionization models with C loudy , the latter sampled according to the density PDF of the arepo simulations to augment the densities in the cosmological simulation. The quartile distributions of the predicted line luminosities overlap with the observed range for nearby galaxies of similar star formation rate (SFR) for all but two emission lines: [O i ]63 more » and CO(3–2), which are overestimated by median factors of 1.3 and 1.0 dex, respectively, compared to the observed line–SFR relation of mixed-type galaxies. We attribute the remaining disagreement with observations to the lack of precise attenuation of the interstellar light on sub-grid scales (≲200 pc) and differences in sample selection. « less
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this

    Hydrogen emission lines can provide extensive information about star-forming galaxies in both the local and high-redshift Universe. We present a detailed Lyman continuum (LyC), Lyman-α (Lyα), and Balmer line (Hα and Hβ) radiative transfer study of a high-resolution isolated Milky Way simulation using the state-of-the-art Arepo-RT radiation hydrodynamics code with the SMUGGLE galaxy formation model. The realistic framework includes stellar feedback, non-equilibrium thermochemistry accounting for molecular hydrogen, and dust grain evolution in the interstellar medium (ISM). We extend our publicly available Cosmic Lyα Transfer (COLT) code with photoionization equilibrium Monte Carlo radiative transfer and various methodology improvements for self-consistent end-to-end (non-)resonant line predictions. Accurate LyC reprocessing to recombination emission requires modelling pre-absorption by dust ($f_\text{abs} \approx 27.5\,\rm{per\,\,cent}$), helium ionization ($f_\text{He} \approx 8.7\,\rm{per\,\,cent}$), and anisotropic escape fractions ($f_\text{esc} \approx 7.9\,\rm{per\,\,cent}$), as these reduce the available budget for hydrogen line emission ($f_\text{H} \approx 55.9\,\rm{per\,\,cent}$). We investigate the role of the multiphase dusty ISM, disc geometry, gas kinematics, and star formation activity in governing the physics of emission and escape, focusing on the time variability, gas-phase structure, and spatial spectral, and viewing angle dependence of the emergent photons. Isolated disc simulations are well-suited for comprehensive observational comparisons with local Hα surveys, butmore »would require a proper cosmological circumgalactic medium (CGM) environment as well as less dust absorption and rotational broadening to serve as analogs for high-redshift Lyα emitting galaxies. Future applications of our framework to next-generation cosmological simulations of galaxy formation including radiation-hydrodynamics that resolve ≲10 pc multiphase ISM and ≲1 kpc CGM structures will provide crucial insights and predictions for current and upcoming Lyα observations.

    « less
  2. ABSTRACT Line intensity mapping (LIM) is rapidly emerging as a powerful technique to study galaxy formation and cosmology in the high-redshift Universe. We present LIM estimates of select spectral lines originating from the interstellar medium (ISM) of galaxies and 21 cm emission from neutral hydrogen gas in the Universe using the large volume, high resolution thesan reionization simulations. A combination of subresolution photoionization modelling for H ii regions and Monte Carlo radiative transfer calculations is employed to estimate the dust-attenuated spectral energy distributions (SEDs) of high-redshift galaxies (z ≳ 5.5). We show that the derived photometric properties such as the ultraviolet (UV) luminosity function and the UV continuum slopes match observationally inferred values, demonstrating the accuracy of the SED modelling. We provide fits to the luminosity–star formation rate relation (L–SFR) for the brightest emission lines and find that important differences exist between the derived scaling relations and the widely used low-z ones because the ISM of reionization era galaxies is generally less metal enriched than in their low-redshift counterparts. We use these relations to construct line intensity maps of nebular emission lines and cross-correlate with the 21 cm emission. Interestingly, the wavenumber at which the correlation switches sign (ktransition) depends heavily on themore »reionization model and to a lesser extent on the targeted emission line, which is consistent with the picture that ktransition probes the typical sizes of ionized regions. The derived scaling relations and intensity maps represent a timely state-of-the-art framework for forecasting and interpreting results from current and upcoming LIM experiments.« less

    Interstellar chemistry is important for galaxy formation, as it determines the rate at which gas can cool, and enables us to make predictions for observable spectroscopic lines from ions and molecules. We explore two central aspects of modelling the chemistry of the interstellar medium (ISM): (1) the effects of local stellar radiation, which ionizes and heats the gas, and (2) the depletion of metals on to dust grains, which reduces the abundance of metals in the gas phase. We run high-resolution (400 M⊙ per baryonic particle) simulations of isolated disc galaxies, from dwarfs to Milky Way-mass, using the fire galaxy formation models together with the chimes non-equilibrium chemistry and cooling module. In our fiducial model, we couple the chemistry to the stellar fluxes calculated from star particles using an approximate radiative transfer scheme; and we implement an empirical density-dependent prescription for metal depletion. For comparison, we also run simulations with a spatially uniform radiation field, and without metal depletion. Our fiducial model broadly reproduces observed trends in H i and H2 mass with stellar mass, and in line luminosity versus star formation rate for [C ii]$_{158 \rm {\mu m}}$, [O i]$_{63 \rm {\mu m}}$, [O iii]$_{88 \rm {\mu m}}$, [N ii]$_{122 \rm {\mu m}}$, andmore »H α6563Å. Our simulations with a uniform radiation field predict fainter luminosities, by up to an order of magnitude for [O iii]$_{88 \rm {\mu m}}$ and H α6563Å, while ignoring metal depletion increases the luminosity of carbon and oxygen lines by a factor ≈ 2. However, the overall evolution of the galaxy is not strongly affected by local stellar fluxes or metal depletion, except in dwarf galaxies where the inclusion of local fluxes leads to weaker outflows and hence higher gas fractions.

    « less

    The nebular recombination line H α is widely used as a star formation rate (SFR) indicator in the local and high-redshift Universe. We present a detailed H α radiative transfer study of high-resolution isolated Milky-Way and Large Magellanic Cloud simulations that include radiative transfer, non-equilibrium thermochemistry, and dust evolution. We focus on the spatial morphology and temporal variability of the H α emission, and its connection to the underlying gas and star formation properties. The H α and H β radial and vertical surface brightness profiles are in excellent agreement with observations of nearby galaxies. We find that the fraction of H α emission from collisional excitation amounts to fcol ∼ 5–$10{{\ \rm per\ cent}}$, only weakly dependent on radius and vertical height, and that scattering boosts the H α luminosity by $\sim 40{{\ \rm per\ cent}}$. The dust correction via the Balmer decrement works well (intrinsic H α emission recoverable within 25 per cent), though the dust attenuation law depends on the amount of attenuation itself both on spatially resolved and integrated scales. Important for the understanding of the H α–SFR connection is the dust and helium absorption of ionizing radiation (Lyman continuum [LyC] photons), which are about $f_{\rm abs}\approx 28{{\ \rm per\ cent}}$ and $f_{\rm He}\approx 9{{\ \rmmore »per\ cent}}$, respectively. Together with an escape fraction of $f_{\rm esc}\approx 6{{\ \rm per\ cent}}$, this reduces the available budget for hydrogen line emission by nearly half ($f_{\rm H}\approx 57{{\ \rm per\ cent}}$). We discuss the impact of the diffuse ionized gas, showing – among other things – that the extraplanar H α emission is powered by LyC photons escaping the disc. Future applications of this framework to cosmological (zoom-in) simulations will assist in the interpretation of spectroscopy of high-redshift galaxies with the upcoming James Webb Space Telescope.

    « less
  5. Context. The Lyman- α line in the ultraviolet (UV) and the [CII] line in the far-infrared (FIR) are widely used tools to identify galaxies in the early Universe and to obtain insights into interstellar medium (ISM) properties in high-redshift galaxies. By combining data obtained with ALMA in band 7 at ∼320 GHz as part of the ALMA Large Program to INvestigate [CII] at Early Times (ALPINE) with spectroscopic data from DEIMOS at the Keck Observatory, VIMOS and FORS2 at the Very Large Telescope, we assembled a unique sample of 53 main-sequence star-forming galaxies at 4.4 <   z  <  6 in which we detect both the Lyman- α line in the UV and the [CII] line in the FIR. Aims. The goal of this paper is to constrain the properties of the Ly α emission in these galaxies in relation to other properties of the ISM. Methods. We used [CII], observed with ALMA, as a tracer of the systemic velocity of the galaxies, and we exploited the available optical spectroscopy to obtain the Ly α -[CII] and ISM-[CII] velocity offsets. Results. We find that 90% of the selected objects have Ly α -[CII] velocity offsets in the range 0 <  Δ vmore »Ly α  − [CII]  <  400 km s −1 , in line with the few measurements available so far in the early Universe, and significantly smaller than those observed at lower redshifts. At the same time, we observe ISM-[CII] offsets in the range −500 <  Δ v ISM−[CII]  <  0 km s −1 , in line with values at all redshifts, which we interpret as evidence for outflows in these galaxies. We find significant anticorrelations between Δ v Ly α −[CII] and the Ly α rest-frame equivalent width EW 0 (Ly α ) (or equivalently, the Ly α escape fraction f esc (Ly α )): galaxies that show smaller Δ v Ly α −[CII] have larger EW 0 (Ly α ) and f esc (Ly α ). Conclusions. We interpret these results in the framework of available models for the radiative transfer of Ly α photons. According to the models, the escape of Ly α photons would be favored in galaxies with high outflow velocities, producing large EW 0 (Ly α ) and small Δ v Ly α -[CII] , in agreement with our observations. The uniform shell model would also predict that the Ly α escape in galaxies with slow outflows (0 <   v out  <  300 km s −1 ) is mainly determined by the neutral hydrogen column density (NHI) along the line of sight, while the alternative model by Steidel et al. (2010, ApJ, 717, 289) would more highly favor a combination of NHI at the systemic velocity and covering fraction as driver of the Ly α escape. We suggest that the increase in Ly α escape that is observed in the literature between z  ∼ 2 and z  ∼ 6 is not due to a higher incidence of fast outflows at high redshift, but rather to a decrease in average NHI along the line of sight, or alternatively, a decrease in HI covering fraction.« less