skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-Rank Characteristic Tensor Density Estimation Part II: Compression and Latent Density Estimation
Award ID(s):
1704074
PAR ID:
10347656
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Signal Processing
Volume:
70
ISSN:
1053-587X
Page Range / eLocation ID:
2669 to 2680
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel statistical method is proposed and investigated for estimating a heavy tailed density under mildsmoothness assumptions. Statistical analyses of heavy-tailed distributions are susceptible to the problem ofsparse information in the tail of the distribution getting washed away by unrelated features of a hefty bulk.The proposed Bayesian method avoids this problem by incorporating smoothness and tail regularizationthrough a carefully specified semiparametric prior distribution, and is able to consistently estimate boththe density function and its tail index at near minimax optimal rates of contraction. A joint, likelihood drivenestimation of the bulk and the tail is shown to help improve uncertainty assessment in estimating the tailindex parameter and offer more accurate and reliable estimates of the high tail quantiles compared tothresholding methods. Supplementary materials for this article are available online. 
    more » « less
  2. Causal effects are often characterized with averages, which can give an incomplete picture of the underlying counterfactual distributions. Here we consider estimating the entire counterfactual density and generic functionals thereof. We focus on two kinds of target parameters. The first is a density approximation, defined by a projection onto a finite-dimensional model using a generalized distance metric, which includes f-divergences as well as Lp norms. The second is the distance between counterfactual densities, which can be used as a more nuanced effect measure than the mean difference, and as a tool for model selection. We study nonparametric efficiency bounds for these targets, giving results for smooth but otherwise generic models and distances. Importantly, we show how these bounds connect to means of particular non-trivial functions of counterfactuals, linking the problems of density and mean estimation. We go on to propose doubly robust-style estimators for the density approximations and distances, and study their rates of convergence, showing they can be optimally efficient in large nonparametric models. We also give analogous methods for model selection and aggregation, when many models may be available and of interest. Our results all hold for generic models and distances, but throughout we highlight what happens for particular choices, such as L2 projections on linear models, and KL projections on exponential families. Finally we illustrate by estimating the density of CD4 count among patients with HIV, had all been treated with combination therapy versus zidovudine alone, as well as a density effect. Our results suggest combination therapy may have increased CD4 count most for high-risk patients. Our methods are implemented in the freely available R package npcausal on GitHub. 
    more » « less