skip to main content


Title: Strategies to Enhance the Capability of Carrier Injection to the Effective Channel for Bottom-gated Amorphous Oxide Thin Films Transistors
Over the two decades, amorphous oxide semiconductors (AOSs) and their thin film transistor (TFT) channel application have been intensely explored to realize high performance, transparent and flexible displays due to their high field effect mobility (μFE=5-20 cm2/Vs), visible range optical transparency, and low temperature processability (25-300 °C).[1-2] The metastable amorphous phase is to be maintained during operation by the addition of Zn and additional third cation species (e.g., Ga, Hf, or Al) as an amorphous phase stabilizer.[3-5] To limit TFT off-state currents, a thin channel layer (10-20 nm) was employed for InZnO (IZO)-based TFTs, or third cations were added to suppress carrier generations in the TFT channel. To resolve bias stress-induced instabilities in TFT performance, approaches to employ defect passivation layers or enhance channel/dielectric interfacial compatibility were demonstrated.[6-7] Metallization contact is also a dominating factor that determines the performance of TFTs. Particularly, it has been reported that high electrical contact resistance significantly sacrifices drain bias applied to the channel, which leads to undesirable power loss during TFT operation and issues for the measurement of TFT field effect mobilities. [2, 8] However, only a few reports that suggest strategies to enhance contact behaviors are available in the literature. Furthermore, the previous approaches (1) require an additional fabrication complexity due to the use of additional treatments at relatively harsh conditions such as UV, plasma, or high temperatures, and (2) may lead to adverse effects on the channel material attributed to the chemical incompatibility between dissimilar materials, and exposures to harsh environments. Therefore, a simple and easy but effective buffer strategy, which does not require any additional process complexities and not sacrifice chemical compatibility, needs to be established to mitigate the contact issues and therefore achieve high performance and low power consumption AOS TFTs. The present study aims to demonstrate an approach utilizing an interfacial buffer layer, which is compositionally homogeneous to the channel to better align work functions between channel and metallization without a significant fabrication complexity and harsh treatment conditions. Photoelectron spectroscopic measurements reveal that the conducting IZO buffer, of which the work function (Φ) is 4.37 eV, relaxes a relatively large Φ difference between channel IZO (Φ=4.81 eV) and Ti (Φ=4.2-4.3 eV) metallization. The buffer is found to lower the energy barrier for charge carriers at the source to reach the effective channel region near the dielectric. In addition, the higher carrier density of the buffer and favorable chemical compatibility with the channel (compositionally the same) further contribute to a significant reduction in specific contact resistance as much as more than 2.5 orders of magnitude. The improved contact and carrier supply performance from the source to the channel lead to an enhanced field effect mobility of up to 56.49 cm2/Vs and a threshold voltage of 1.18 V, compared to 13.41 cm2/Vs and 7.44 V of IZO TFTs without a buffer. The present work is unique in that an approach to lower the potential barrier between the source and the effective channel region (located near the channel/dielectric interface, behaving similar to a buried-channel MOSFET [9]) by introducing a contact buffer layer that enhances the field effect mobility and facilitates carrier supply from the source to the effective channel region.  more » « less
Award ID(s):
1931088
NSF-PAR ID:
10347769
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Research Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, and photodetectors. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to wide range of oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In2O3-based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable TFT performance, identified vacancy-based native defect doping mechanisms, suggested interfacial buffer layers to promote charge injection capability, and established the role of third cation species on the carrier generation and carrier transport. More recently, we have reported facile manufacturing of p-type SnOx through reactive magnetron sputtering from a Sn metal target. The fabricated p-SnOx was found to be devoid of metallic phase of Sn from x-ray photoelectron spectroscopy and demonstrated stable performance in a fully oxide based p-n heterojunction together with n-InGaZnO. The oxide-based p-n junctions exhibited a high rectification ratio greater than 103 at ±3 V, a low saturation current of ~2x10-10, and a small turn-on voltage of -0.5 V. With all the previous achievements and investigations about p-type oxide semiconductors, challenges remain for implementing p-type oxide realization. For the implementation of oxide-based p-n heterojunctions, the performance needs to be further enhanced. The current on/off ration may be limited, in our device structure, due to either high reverse saturation current (or current density) or non-ideal performance. In this study, two rational strategies are suggested to introduce an “intrinsic” layer, which is expected to reduce the reverse saturation current between p-SnOx and n-IGZO and hence increase the on/off ratio. The carrier density of n-IGZO is engineered in-situ during the sputtering process, by which compositionally homogeneous IGZO with significantly reduced carrier density is formed at the interface. Then, higher carrier density IGZO is formed continuously on the lower carrier density IGZO during the sputtering process without any exposure of the sample to the air. Alternatively, heterogeneous oxides of MgO and SiO2 are integrated into between p-SnOx and n-IGZO, by which the defects on the surface can be passivated. The interfacial properties are thoroughly investigated using transmission electron microscopy and atomic force microscopy. The I-V characteristics are compared between the set of devices integrated with two types of “intrinsic” layers. The current research results are expected to contribute to the development of p-type oxides and their industrial application manufacturing process that meets current processing requirements, such as mass production in p-type oxide semiconductors. 
    more » « less
  2. The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, memory devices, and photodetectors[1]. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures[2]. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to a wide range of oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In 2 O 3 -based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable and high TFT performance[3, 4], identified vacancy-based native defect doping mechanisms[5], suggested interfacial buffer layers to promote charge injection capability[6], and established the role of third cation species on the carrier generation and carrier transport[7]. More recently, we have reported facile manufacturing of p-type SnOx through reactive magnetron sputtering from a Sn metal target[8]. The fabricated p-SnOx was found to be devoid of metallic phase of Sn from x-ray photoelectron spectroscopy and demonstrated stable performance in a fully oxide-based p-n heterojunction together with n-InGaZnO. The oxide-based p-n junctions exhibited a high rectification ratio greater than 10 3 at ±3 V, a low saturation current of ~2x10 -10 , and a small turn-on voltage of -0.5 V. In this presentation, we review recent achievements and still remaining issues in transition metal oxide semiconductors and their device applications, in particular, bipolar applications including p-n heterostructures and complementary metal-oxide-semiconductor devices as well as single polarity devices such as TFTs and memristors. In addition, the fundamental mechanisms of carrier transport behaviors and doping mechanisms that govern the performance of these oxide-based devices will also be discussed. ACKNOWLEDGMENT This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education. REFERENCES [1] K. Nomura et al. , Nature, vol. 432, no. 7016, pp. 488-492, Nov 25 2004. [2] D. C. Paine et al. , Thin Solid Films, vol. 516, no. 17, pp. 5894-5898, Jul 1 2008. [3] S. Lee et al. , Journal of Applied Physics, vol. 109, no. 6, p. 063702, Mar 15 2011, Art. no. 063702. [4] S. Lee et al. , Applied Physics Letters, vol. 104, no. 25, p. 252103, 2014. [5] S. Lee et al. , Applied Physics Letters, vol. 102, no. 5, p. 052101, Feb 4 2013, Art. no. 052101. [6] M. Liu et al. , ACS Applied Electronic Materials, vol. 3, no. 6, pp. 2703-2711, 2021/06/22 2021. [7] A. Reed et al. , Journal of Materials Chemistry C, 10.1039/D0TC02655G vol. 8, no. 39, pp. 13798-13810, 2020. [8] D. H. Lee et al. , ACS Applied Materials & Interfaces, vol. 13, no. 46, pp. 55676-55686, 2021/11/24 2021. 
    more » « less
  3. null (Ed.)
    Amorphous oxide semiconductors (AOSs), specifically those based on ternary cation systems such as Ga-, Si-, and Hf-doped InZnO, have emerged as promising material candidates for application in next-gen transparent electronic and optoelectronic devices. Third cation-doping is a common method used during the manufacturing of amorphous oxide thin film transistors (TFTs), primarily with the intention of suppressing carrier generation during the fabrication of the channel layer of a transistor. However, the incorporation of a third cation species has been observed to negatively affect the carrier transport properties of the thin film, as it may act as an additional scattering center and subsequently lower the carrier mobility from ∼20–40 cm 2 V −1 s −1 of In 2 O 3 or a binary cation system ( i.e. , InZnO) to ∼1–10 cm 2 V −1 s −1 . This study investigates the structural, electrical, optoelectronic, and chemical properties of the ternary cation material system, InAlZnO (IAZO). The optimized carrier mobility (Hall Effect) of Al-doped InZnO is shown to remain as high as ∼25–45 cm 2 V −1 s −1 . Furthermore, Al incorporation in InZnO proves to enhance the amorphous phase stability under thermal stresses when compared to baseline InZnO films. Thin film transistors integrating optimized IAZO as the channel layer are shown to demonstrate promisingly high field effect mobilities (∼18–20 cm 2 V −1 s −1 ), as well as excellent drain current saturation and high drain current on/off ratios (>10 7 ). The high mobility and improved amorphous phase stability suggest strong potential for IAZO incorporation in the next generation of high performance and sustainable optoelectronic devices such as transparent displays. 
    more » « less
  4. In recent years, oxide electronics has emerged as one of the most promising new technologies for a variety of electrical and optoelectronic applications, including next-generation displays, solar cells, batteries, and photodetectors. Oxide electronics have a lot of potential because of their high carrier mobilities and ability to be manufactured at low temperatures. However, the preponderance of oxide semiconductors is n-type oxides, limiting present applications to unipolar devices and stifling the development of oxide-based bipolar devices like p-n diodes and complementary metal-oxide–semiconductors. We have contributed to oxide electronics, particularly on transition metal oxide semiconductors of which the cations include In, Zn, Sn and Ga. We have integrated these oxide semiconductors into thin film transistors (TFTs) as active channel layer in light of the unique combination of electronic and optical properties such as high carrier mobility (5-10 cm2/Vs), optical transparency in the visible regime (>~90%) and mild thermal budget processing (200-400°C). In this study, we achieved four different results. The first result is that unlike several previous reports on oxide p-n junctions fabricated exploiting a thin film epitaxial growth technique (known as molecular beam epitaxy, MBE) or a high-powered laser beam process (known as pulsed laser deposition, PLD) that requires ultra-high vacuum conditions, a large amount of power, and is limited for large-area processing, we demonstrate oxide-based heterojunction p-n diodes that consist of sputter-synthesized p-SnOx and n-IGZO of which the manufacturing routes are in-line with current manufacturing requirements. The second result is that the synthesized p-SnOx films are devoid of metallic Sn phases (i.e., Sn0 state) with carrier density tuneability and high carrier mobility (> 2 cm2/Vs). The third result is that the charge blocking performance of the metallurgical junction is significantly enhanced by the engineering of trap/defect density of n-IGZO, which is identified using photoelectron microscopy and valence band measurements. The last result is that the resulting oxide-based p-n heterojunction exhibits a high rectification ratio greater than 103 at ±3 V (highest among the sputter-processed oxide junctions), a low saturation current of ~2×10-10 A, and a small turn-on voltage of ~0.5 V. The outcomes of the current study are expected to contribute to the development of p-type oxides and their industrial device applications such as p-n diodes of which the manufacturing routes are in-line with the current processing requirements. 
    more » « less
  5. It has been challenging to synthesize p-type SnOx(1≤x<2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band.

    We recently reported on the processing of p-type SnOx and an oxide-based p-n heterostructures, demonstrating high on/off rectification ratio (>103), small turn-on voltage (<0.5 V), and low saturation current (~1×10-10A)1. In order to further understand the p-type oxide and engineer the properties for various electronic device applications, it is important to identify (or establish) the dominating doping and transport mechanisms. The low dopability in p-type SnOx, of which the causation is also closely related to the narrow processing window, needs to be mitigated so that the electrical properties of the material are to be adequately engineered2, 3.

    Herein, we report on the multifunctional encapsulation of p-SnOxto limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnOxchannel for thin film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry measurements identified that ultra-thin SiO2as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnOxand augmented hydrogen density across the entire thickness of the channel. Encapsulated p-SnOx-based TFTs demonstrated much-enhanced channel conductance modulation in response to the gate bias applied, featuring higher on-state current and lower off-state current. The relevance between the TFT performance and the effects of oxygen suppression and hydrogen permeation is discussed in regard to the intrinsic and extrinsic doping mechanisms. These results are supported by density-functional-theory calculations.

    Acknowledgement

    This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education.

    References

    Lee, D. H.; Park, H.; Clevenger, M.; Kim, H.; Kim, C. S.; Liu, M.; Kim, G.; Song, H. W.; No, K.; Kim, S. Y.; Ko, D.-K.; Lucietto, A.; Park, H.; Lee, S., High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnOx and n-InGaZnO.ACS Applied Materials & Interfaces2021,13(46), 55676-55686.

    Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X., Identification and design principles of low hole effective mass p-type transparent conducting oxides.Nat Commun2013,4.

    Yim, K.; Youn, Y.; Lee, M.; Yoo, D.; Lee, J.; Cho, S. H.; Han, S., Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor.npj Computational Materials2018,4(1), 17.

    Figure 1

     

    more » « less