Abstract Under varying growth and device processing conditions, ultrabroadband photoconduction (UBPC) reveals strongly evolving trends in the defect density of states (DoS) for amorphous oxide semiconductor thin‐film transistors (TFTs). Spanning the wide bandgap of amorphous InGaZnOx(a‐IGZO), UBPC identifies seven oxygen deep donor vacancy peaks that are independently confirmed by energetically matching to photoluminescence emission peaks. The subgap DoS from 15 different types of a‐IGZO TFTs all yield similar DoS, except only back‐channel etch TFTs can have a deep acceptor peak seen at 2.2 eV below the conduction band mobility edge. This deep acceptor is likely a zinc vacancy, evidenced by trap density which becomes 5‐6× larger when TFT wet‐etch methods are employed. Certain DoS peaks are strongly enhanced for TFTs with active channel processing damage caused from plasma exposure. While Ar implantation and He plasma processing damage are similar, Ar plasma yields more disorder showing a ≈2 × larger valence‐band Urbach energy, and two orders of magnitude increase in the deep oxygen vacancy trap density. Changing the growth conditions of a‐IGZO also impacts the DoS, with zinc‐rich TFTs showing much poorer electrical performance compared to 1:1:1 molar ratio a‐IGZO TFTs owing to the former having a ∼10 × larger oxygen vacancy trap density. Finally, hydrogen is found to behave as a donor in amorphous indium tin gallium zinc oxide TFTs.
more »
« less
Strategies to Enhance the Capability of Carrier Injection to the Effective Channel for Bottom-gated Amorphous Oxide Thin Films Transistors
Over the two decades, amorphous oxide semiconductors (AOSs) and their thin film transistor (TFT) channel application have been intensely explored to realize high performance, transparent and flexible displays due to their high field effect mobility (μFE=5-20 cm2/Vs), visible range optical transparency, and low temperature processability (25-300 °C).[1-2] The metastable amorphous phase is to be maintained during operation by the addition of Zn and additional third cation species (e.g., Ga, Hf, or Al) as an amorphous phase stabilizer.[3-5] To limit TFT off-state currents, a thin channel layer (10-20 nm) was employed for InZnO (IZO)-based TFTs, or third cations were added to suppress carrier generations in the TFT channel. To resolve bias stress-induced instabilities in TFT performance, approaches to employ defect passivation layers or enhance channel/dielectric interfacial compatibility were demonstrated.[6-7] Metallization contact is also a dominating factor that determines the performance of TFTs. Particularly, it has been reported that high electrical contact resistance significantly sacrifices drain bias applied to the channel, which leads to undesirable power loss during TFT operation and issues for the measurement of TFT field effect mobilities. [2, 8] However, only a few reports that suggest strategies to enhance contact behaviors are available in the literature. Furthermore, the previous approaches (1) require an additional fabrication complexity due to the use of additional treatments at relatively harsh conditions such as UV, plasma, or high temperatures, and (2) may lead to adverse effects on the channel material attributed to the chemical incompatibility between dissimilar materials, and exposures to harsh environments. Therefore, a simple and easy but effective buffer strategy, which does not require any additional process complexities and not sacrifice chemical compatibility, needs to be established to mitigate the contact issues and therefore achieve high performance and low power consumption AOS TFTs. The present study aims to demonstrate an approach utilizing an interfacial buffer layer, which is compositionally homogeneous to the channel to better align work functions between channel and metallization without a significant fabrication complexity and harsh treatment conditions. Photoelectron spectroscopic measurements reveal that the conducting IZO buffer, of which the work function (Φ) is 4.37 eV, relaxes a relatively large Φ difference between channel IZO (Φ=4.81 eV) and Ti (Φ=4.2-4.3 eV) metallization. The buffer is found to lower the energy barrier for charge carriers at the source to reach the effective channel region near the dielectric. In addition, the higher carrier density of the buffer and favorable chemical compatibility with the channel (compositionally the same) further contribute to a significant reduction in specific contact resistance as much as more than 2.5 orders of magnitude. The improved contact and carrier supply performance from the source to the channel lead to an enhanced field effect mobility of up to 56.49 cm2/Vs and a threshold voltage of 1.18 V, compared to 13.41 cm2/Vs and 7.44 V of IZO TFTs without a buffer. The present work is unique in that an approach to lower the potential barrier between the source and the effective channel region (located near the channel/dielectric interface, behaving similar to a buried-channel MOSFET [9]) by introducing a contact buffer layer that enhances the field effect mobility and facilitates carrier supply from the source to the effective channel region.
more »
« less
- Award ID(s):
- 1931088
- PAR ID:
- 10347769
- Date Published:
- Journal Name:
- Materials Research Society
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report a new physics-based model for dual-gate amorphous-indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) which we developed and fine-tuned through experimental implementation and benchtop characterization.We fabricated and characterized a variety of test patterns, including a-IGZO TFTs with varying gate widths (100–1000 μm) and channel lengths (5–50 μm), transmission-line-measurement patterns and ground–signal–ground (GSG) radio frequency (RF) patterns. We modeled the contact resistance as a function of bias, channel area, and temperature, and captured all operating regimes, used physics-based modeling adjusted for empirical data to capture the TFT characteristics including ambipolar subthreshold currents, graded interbias-regime current changes, threshold and flat-band voltages, the interface trap density, the gate leakage currents, the noise, and the relevant small signal parameters. To design high-precision circuits for biosensing, we validated the dc, small signal, and noise characteristics of the model. We simulated and fabricated a two-stage common source amplifier circuit with a common drain output buffer and compared the measured and simulated gain and phase performance, finding an excellent fit over a frequency range spanning 10 kHz–10 MHz.more » « less
-
null (Ed.)Amorphous oxide semiconductors (AOSs), specifically those based on ternary cation systems such as Ga-, Si-, and Hf-doped InZnO, have emerged as promising material candidates for application in next-gen transparent electronic and optoelectronic devices. Third cation-doping is a common method used during the manufacturing of amorphous oxide thin film transistors (TFTs), primarily with the intention of suppressing carrier generation during the fabrication of the channel layer of a transistor. However, the incorporation of a third cation species has been observed to negatively affect the carrier transport properties of the thin film, as it may act as an additional scattering center and subsequently lower the carrier mobility from ∼20–40 cm 2 V −1 s −1 of In 2 O 3 or a binary cation system ( i.e. , InZnO) to ∼1–10 cm 2 V −1 s −1 . This study investigates the structural, electrical, optoelectronic, and chemical properties of the ternary cation material system, InAlZnO (IAZO). The optimized carrier mobility (Hall Effect) of Al-doped InZnO is shown to remain as high as ∼25–45 cm 2 V −1 s −1 . Furthermore, Al incorporation in InZnO proves to enhance the amorphous phase stability under thermal stresses when compared to baseline InZnO films. Thin film transistors integrating optimized IAZO as the channel layer are shown to demonstrate promisingly high field effect mobilities (∼18–20 cm 2 V −1 s −1 ), as well as excellent drain current saturation and high drain current on/off ratios (>10 7 ). The high mobility and improved amorphous phase stability suggest strong potential for IAZO incorporation in the next generation of high performance and sustainable optoelectronic devices such as transparent displays.more » « less
-
Ultra-wide bandgap (UWBG) Al0.65Ga0.35N channel high electron mobility transistors (HEMTs) were deposited using a close-coupled showerhead metal-organic chemical vapor deposition reactor on AlN-on-sapphire templates to investigate the effect of transport properties of the two-dimensional electron gas (2DEG) on the epitaxial structure design. The impact of various scattering phenomena on AlGaN channel HEMTs was analyzed with respect to the channel, buffer, and AlN interlayer design, revealing that the alloy disorder and ionized impurity scattering mechanisms were predominant, limiting the mobility of 2DEG up to 180 cm2/Vs for a sheet charge density of 1.1 × 1013 cm−2. A surface roughness of <1 nm (2 μm × 2 μm atomic force microscopy scan) was achieved for the epitaxial structures demonstrating superior crystalline quality. The fabricated HEMT device showed state-of-the-art contact resistivity (ρc = 8.35 × 10^−6 Ω · cm2), low leakage current (<10^−6 A/mm), high ION/IOFF ratio (>10^5), a breakdown voltage of 2.55 kV, and a Baliga's figure of merit of 260 MW/cm2. This study demonstrates the optimization of the structural design of UWBG AlGaN channel HEMTs and its effect on transport properties to obtain state-of-the-art device performance.more » « less
-
Despite the outstanding achievements in multiple areas such as displays and energy, oxide electronics has been limited to single-polar (n-type) applications due to the facile generation of oxygen vacancies as native donors. On the contrary, the processing of p-type oxides is restrained due to the high formation energy of native acceptors. Furthermore, the oxygen 2p orbitals of the majority of oxide semiconductors are anisotropic and localized to the valence band maximum (VBM), resulting in a large effective mass of holes and hence low carrier mobility. Hybrid orbital electronic configurations with cation d10 (closed shell structure) and cation s2 (pseudo-closed structure) have been suggested initially in complex oxides (e.g., CuMO2 where M= Al, Ga, and In; and SrCu2O2) to delocalize the oxygen 2p orbitals from the VBM. However, these complex oxides require high temperatures to process and are difficult to engineer the electrical properties of carrier density and carrier mobility due to the correlated nature of multi-cation species. Several single-cation p-type oxides such as PbO, Bi2O3, and SnO have emerged as well, where the energy level of a unique s-orbital of cations is similar to oxygen 2p orbitals, forming strong hybrid structures. In addition, a simpler single-cation structure leads to easier control of electrical properties required in practical device applications such as thin film transistors (TFT) and complementary logic inverters. We previously reported scalable processing of p-type SnOx through thermodynamic-based interfacial reactions as well as reactive sputtering.1More recently, we also suggested multi-modal encapsulation to enhance TFT on- and off-state behaviors and identified a defect complex as an effective p-type doping agent.2However, challenges remain since the TFT off-state current is large, and the defect/trap state density is high. In this presentation, we share our approaches to engineer the off-state current and passivate the defect/trap states. In addition to channel thickness optimization, intrinsic (Sn vacancy or oxygen interstitial) and extrinsic (H-related species) doping strategies to adjust channel carrier density will be compared. The performance of several surface treatments (oxygen plasma and UV) and TFT back channel encapsulations (SiO2 and Al2O3) will be systematically compared. Then, the device performance of optimized p-type SnO TFTs and complementary inverters with n-type InZnO TFTs will be discussed. ReferencesLee et al., ACS Applied Materials & Interfaces, 13 (46), 55676–55686 (2021)Lee et al., ACS Applied Materials & Interfaces, 14 (48), 53999–54011 (2022) Acknowledgments This work was partially supported by National Science Foundation, Award number ECCS-1931088 and CBET-2207302.more » « less
An official website of the United States government

