Abstract Recent work on metal-intermediate globular clusters (GCs) with [Fe/H] = −1.5 and −0.75 has illustrated the theoretical behavior of multiple populations in photometric diagrams obtained with the JWST. These results are confirmed by observations of multiple populations among the M dwarfs of 47 Tucanae. Here we explore multiple populations in metal-poor GCs with [Fe/H] = −2.3. We take advantage of synthetic spectra and isochrones that account for the chemical composition of multiple populations to identify photometric diagrams that separate the distinct stellar populations of GCs. We derive high-precision photometry and proper motion for main-sequence (MS) stars in the metal-poor GC M92 from JWST and Hubble Space Telescope images. We identify a first-generation (1G) and two main groups of second-generation (2G A and 2G B ) stars and investigate their kinematics and chemical composition. We find isotropic motions with no differences among the distinct populations. The comparison between the observed colors of the M92 stars and the colors derived by synthetic spectra reveals that the helium abundances of 2G A and 2G B stars are higher than those of the 1G by Δ Y ∼ 0.01 and 0.04, respectively. The m F090W versus m F090W − m F277W color–magnitude diagram shows that below the knee MS stars exhibit a wide color broadening due to multiple populations. We constrain the amount of oxygen variation needed to reproduce the observed MS width, which is consistent with results on red giant branch stars. We conclude that multiple populations with masses of ∼0.1–0.8 M ⊙ share similar chemical compositions.
more »
« less
Constraining the original composition of the gas forming first-generation stars in globular clusters
ABSTRACT Disentangling distinct stellar populations along the red-giant branches (RGBs) of globular clusters (GCs) is possible by using the pseudo-two-colour diagram dubbed chromosome map (ChM). One of the most intriguing findings is that the so-called first-generation (1G) stars, characterized by the same chemical composition of their natal cloud, exhibit extended sequences in the ChM. Unresolved binaries and internal variations in helium or metallicity have been suggested to explain this phenomenon. Here, we derive high-precision Hubble Space Telescope photometry of the GCs NGC 6362 and NGC 6838 and build their ChMs. We find that both 1G RGB and main-sequence (MS) stars exhibit wider ChM sequences than those of second-generation (2G). The evidence of this feature even among unevolved 1G MS stars indicates that chemical inhomogeneities are imprinted in the original gas. We introduce a pseudo-two-magnitude diagram to distinguish between helium and metallicity, and demonstrate that star-to-star metallicity variations are responsible for the extended 1G sequence. Conversely, binaries provide a minor contribution to the phenomenon. We estimate that the metallicity variations within 1G stars of 55 GCs range from less than [Fe/H]∼0.05 to ∼0.30 and mildly correlate with cluster mass. We exploit these findings to constrain the formation scenarios of multiple populations showing that they are qualitatively consistent with the occurrence of multiple generations. In contrast, the fact that 2G stars have more homogeneous iron content than the 1G challenges the scenarios based on accretion of material processed in massive 1G stars on to existing protostars.
more »
« less
- Award ID(s):
- 2009193
- PAR ID:
- 10347793
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 513
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 735 to 751
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present Hubble Space Telescope (HST) photometric results for NGC 6402, a highly reddened, very luminous Galactic globular cluster (GC). Recent spectroscopic observations of its red giant stars have shown a quite peculiar behavior in the chemistry of its multiple populations. These results have prompted UV and optical HST observations aimed at obtaining the cluster’s “chromosome map” (ChM), an efficient tool for classifying GCs and characterizing their multiple populations. We find that the discontinuity in the abundance distributions of O, Mg, Al, and Na inferred from spectroscopy is more nuanced in the ChM, which is mostly sensitive to nitrogen. Nevertheless, photometry in optical bands reveals a double main sequence, indicating a discontinuity in the helium content of the populations. The population with the largest chemical anomalies (extreme) peaks at a helium mass fraction Y ∼ 0.31. This helium content is consistent with results from the analysis of the distribution of horizontal branch stars and the spectrophotometry of the red giants. The ChM and the color–magnitude diagrams are compared with those of NGC 2808, a prototype GC with helium abundances up to Y ≳ 0.35, and both confirm that NGC 6402 does not host stellar populations with such extreme helium content. Further, the ChM reveals the presence of a group of stars with higher metallicity, thus indicating that NGC 6402 is a Type II cluster. The modalities of formation of the multiple populations in NGC 6402 are briefly surveyed, with main attention on the asymptotic giant branch and supermassive star models, and on possible cluster merging.more » « less
-
Almost all globular clusters (GCs) contain multiple stellar populations consisting of stars with varying helium and light-element abundances. These populations include first-population stars, which exhibit similar chemical compositions as halo-field stars with comparable [Fe/H], and second-population stars, characterized by higher helium and nitrogen abundances along with reduced levels of oxygen and carbon. Nowadays, one of the most intriguing open questions about GCs pertains to the formation and evolution of their multiple populations. Recent works based on N-body simulations of GCs show that the fractions and characteristics of binary stars can serve as dynamic indicators of the formation period of multiple-population GCs and their subsequent dynamical evolution. Nevertheless, the incidence of binaries among multiple populations is still poorly studied. Moreover, the few available observational studies focus only on the bright stars of a few GCs. We used deep images of the GC 47 Tucanae collected with theJames Webband theHubblespace telescopes to investigate the incidence of binaries among multiple populations of M dwarfs and bright main- sequence stars. To reach this objective, we used UV, optical, and near-infrared filters to construct photometric diagrams that allowed us to disentangle binary systems and multiple populations. Moreover, we compared these observations with a large sample of simulated binaries. In the cluster central regions, the incidence of binaries among first-population stars is only slightly higher than that of second- population stars. In contrast, in the external regions, the majority of the studied binaries (≳85%) are composed of first-population stars. These results are consistent with the GC formation scenarios in which the second-population stars originate in the cluster’s central region, forming a compact and dense stellar group within a more extended system of first-population stars.more » « less
-
Abstract Our understanding of the kinematic properties of multiple stellar populations (mPOPs) in Galactic globular clusters (GCs) is still limited compared to what we know about their chemical and photometric characteristics. Such limitation arises from the lack of a comprehensive observational investigation of this topic. Here we present the first homogeneous kinematic analysis of mPOPs in 56 GCs based on high-precision proper motions computed with Hubble Space Telescope data. We focused on red-giant-branch stars, for which the mPOP tagging is clearer, and measured the velocity dispersion of stars belonging to first (1G) and second generations (2G). We find that 1G stars are generally kinematically isotropic even at the half-light radius, whereas 2G stars are isotropic at the center and become radially anisotropic before the half-light radius. The radial anisotropy is induced by a lower tangential velocity dispersion of 2G stars with respect to the 1G population, while the radial component of the motion is comparable. We also show possible evidence that the kinematic properties of mPOPs are affected by the Galactic tidal field, corroborating previous observational and theoretical results suggesting a relation between the strength of the external tidal field and some properties of mPOPs. Although limited to the GCs’ central regions, our analysis leads to new insights into the mPOP phenomenon, and provides the motivation for future observational studies of the internal kinematics of mPOPs.more » « less
-
null (Ed.)ABSTRACT The amount of mass lost by stars during the red-giant branch (RGB) phase is one of the main parameters to understand and correctly model the late stages of stellar evolution. Nevertheless, a fully comprehensive knowledge of the RGB mass-loss is still missing. Galactic Globular Clusters (GCs) are ideal targets to derive empirical formulations of mass-loss, but the presence of multiple populations with different chemical compositions has been a major challenge to constrain stellar masses and RGB mass-losses. Recent work has disentangled the distinct stellar populations along the RGB and the horizontal branch (HB) of 46 GCs, thus providing the possibility to estimate the RGB mass-loss of each stellar population. The mass-losses inferred for the stellar populations with pristine chemical composition (called first-generation or 1G stars) tightly correlate with cluster metallicity. This finding allows us to derive an empirical RGB mass-loss law for 1G stars. In this paper, we investigate seven GCs with no evidence of multiple populations and derive the RGB mass-loss by means of high-precision Hubble-Space Telescope photometry and accurate synthetic photometry. We find a cluster-to-cluster variation in the mass-loss ranging from ∼0.1 to ∼0.3 M⊙. The RGB mass-loss of simple-population GCs correlates with the metallicity of the host cluster. The discovery that simple-population GCs and 1G stars of multiple population GCs follow similar mass-loss versus metallicity relations suggests that the resulting mass-loss law is a standard outcome of stellar evolution.more » « less
An official website of the United States government

