Robotic manipulation problems are inherently continuous, but typically have underlying discrete structure, e.g., whether or not an object is grasped. This means many problems are multi-modal and in particular have a continuous infinity of modes. For example, in a pick-and-place manipulation domain, every grasp and placement of an object is a mode. Usually manipulation problems require the robot to transition into different modes, e.g., going from a mode with an object placed to another mode with the object grasped. To successfully find a manipulation plan, a planner must find a sequence of valid single-mode motions as well as valid transitions between these modes. Many manipulation planners have been proposed to solve tasks with multi-modal structure. However, these methods require mode-specific planners and fail to scale to very cluttered environments or to tasks that require long sequences of transitions. This paper presents a general layered planning approach to multi-modal planning that uses a discrete “lead” to bias search towards useful mode transitions. The difficulty of achieving specific mode transitions is captured online and used to bias search towards more promising sequences of modes. We demonstrate our planner on complex scenes and show that significant performance improvements are tied to both our discrete “lead” and our continuous representation.
more »
« less
Decoding Output Sequences for Discrete-Time Linear Hybrid Systems.
In this paper, we study the “decoding” problem for discrete-time, stochastic hybrid systems with linear dynamics in each mode. Given an output trace of the system, the decoding problem seeks to construct a sequence of modes and states that yield a trace “as close as possible” to the original output trace. The decoding problem generalizes the state estimation problem, and is applicable to hybrid systems with non-determinism. The decoding problem is NP-complete, and can be reduced to solving a mixed-integer linear program (MILP). In this paper, we decompose the decoding problem into two parts: (a) finding a sequence of discrete modes and transitions; and (b) finding corresponding continuous states for the mode/transition sequence. In particular, once a sequence of modes/transitions is fixed, the problem of “filling in” the continuous states is performed by a linear programming problem. In order to support the decomposition, we “cover” the set of all possible mode/transition sequences by a finite subset. We use well-known probabilistic arguments to justify a choice of cover with high confidence and design randomized algorithms for finding such covers. Our approach is demonstrated on a series of benchmarks, wherein we observe that relatively tiny fraction of the possible mode/transition sequences can be used as a cover. Furthermore, we show that the resulting linear programs can be solved rapidly by exploiting the tree structure of the set cover.
more »
« less
- PAR ID:
- 10347859
- Date Published:
- Journal Name:
- 25th ACM International Conference on Hybrid Systems: Computation and Control
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper is devoted to the detection of contingencies in modern power systems. Because the systems we consider are under the framework of cyber-physical systems, it is necessary to take into consideration of the information processing aspect and communication networks. A consequence is that noise and random disturbances are unavoidable. The detection problem then becomes one known as quickest detection. In contrast to running the detection problem in a discretetime setting leading to a sequence of detection problems, this work focuses on the problem in a continuous-time setup. We treat stochastic differential equation models. One of the distinct features is that the systems are hybrid involving both continuous states and discrete events that coexist and interact. The discrete event process is modeled by a continuous-time Markov chain representing random environments that are not resented by a continuous sample path. The quickest detection then can be written as an optimal stopping problem. This paper is devoted to finding numerical solutions to the underlying problem. We use a Markov chain approximation method to construct the numerical algorithms. Numerical examples are used to demonstrate the performance.more » « less
-
Information bottleneck (IB) is a technique for extracting information in one random variable X that is relevant for predicting another random variable Y. IB works by encoding X in a compressed “bottleneck” random variable M from which Y can be accurately decoded. However, finding the optimal bottleneck variable involves a difficult optimization problem, which until recently has been considered for only two limited cases: discrete X and Y with small state spaces, and continuous X and Y with a Gaussian joint distribution (in which case optimal encoding and decoding maps are linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous X and Y, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel non-parametric upper bound for mutual information. We describe how to implement our method using neural networks. We then show that it achieves better performance than the recently-proposed “variational IB” method on several real-world datasets.more » « less
-
Integrating Symbolic Planning and Reinforcement Learning for Following Temporal Logic SpecificationsTeaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments is a challenging problem. We consider that user defines every task by a linear temporal logic (LTL) formula. However, some causal dependencies in complex environments may be unknown to the user in advance. Hence, when human user is specifying instructions, the robot cannot solve the tasks by simply following the given instructions. In this work, we propose a hierarchical reinforcement learning (HRL) framework in which a symbolic transition model is learned to efficiently produce high-level plans that can guide the agent efficiently solve different tasks. Specifically, the symbolic transition model is learned by inductive logic programming (ILP) to capture logic rules of state transitions. By planning over the product of the symbolic transition model and the automaton derived from the LTL formula, the agent can resolve causal dependencies and break a causally complex problem down into a sequence of simpler low-level sub-tasks. We evaluate the proposed framework on three environments in both discrete and continuous domains, showing advantages over previous representative methods.more » « less
-
We study the problem of finding a (pure) product state with optimal fidelity to an unknown n-qubit quantum state ρ, given copies of ρ. This is a basic instance of a fundamental question in quantum learning: is it possible to efficiently learn a simple approximation to an arbitrary state? We give an algorithm which finds a product state with fidelity ε-close to optimal, using N=npoly(1/ε) copies of ρ and poly(N) classical overhead. We further show that estimating the optimal fidelity is NP-hard for error ε=1/poly(n), showing that the error dependence cannot be significantly improved. For our algorithm, we build a carefully-defined cover over candidate product states, qubit by qubit, and then demonstrate that extending the cover can be reduced to approximate constrained polynomial optimization. For our proof of hardness, we give a formal reduction from polynomial optimization to finding the closest product state. Together, these results demonstrate a fundamental connection between these two seemingly unrelated questions. Building on our general approach, we also develop more efficient algorithms in three simpler settings: when the optimal fidelity exceeds 5/6; when we restrict ourselves to a discrete class of product states; and when we are allowed to output a matrix product state.more » « less
An official website of the United States government

