skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Federated or Split? A Performance and Privacy Analysis of Hybrid Split and Federated Learning Architectures
Award ID(s):
1908677
PAR ID:
10347871
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Cloud Computing (IEEE CLOUD)
Page Range / eLocation ID:
250 to 260
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated learning (FL) offers many benefits, such as better privacy preservation and less communication overhead for scenarios with frequent data generation. In FL, local models are trained on end-devices and then migrated to the network edge or cloud for global aggregation. This aggregated model is shared back with end-devices to further improve their local models. This iterative process continues until convergence is achieved. Although FL has many merits, it has many challenges. The prominent one is computing resource constraints. End-devices typically have fewer computing resources and are unable to learn well the local models. Therefore, split FL (SFL) was introduced to address this problem. However, enabling SFL is also challenging due to wireless resource constraints and uncertainties. We formulate a joint end-devices computing resources optimization, task-offloading, and resource allocation problem for SFL at the network edge. Our problem formulation has a mixed-integer non-linear programming problem nature and hard to solve due to the presence of both binary and continuous variables. We propose a double deep Q-network (DDDQN) and optimization-based solution. Finally, we validate the proposed method using extensive simulation results. 
    more » « less
  2. This paper proposes a novel intelligent human activity recognition (HAR) framework based on a new design of Federated Split Learning (FSL) with Differential Privacy (DP) over edge networks. Our FSL-DP framework leverages both accelerometer and gyroscope data, achieving significant improvements in HAR accuracy. The evaluation includes a detailed comparison between traditional Federated Learning (FL) and our FSL framework, showing that the FSL framework outperforms FL models in both accuracy and loss metrics. Additionally, we examine the privacy-performance trade-off under different data settings in the DP mechanism, highlighting the balance between privacy guarantees and model accuracy. The results also indicate that our FSL framework achieves faster communication times per training round compared to traditional FL, further emphasizing its efficiency and effectiveness. This work provides valuable insight and a novel framework which was tested on a real-life dataset. 
    more » « less