skip to main content


Title: A height-dependent climatological model of the equatorial ionospheric zonal plasma drifts (EZDrifts): Description and application to an analysis of the longitudinal variations of the zonal drifts
We introduce the implementation of a global climatological model of the equatorial ionospheric F-region zonal drifts (EZDrifts) that is made available to the public. The model uses the analytic description of the zonal plasma drifts presented by Haerendel et al. (1992) [ J Geophys Res 97(A2) : 1209–1223] and is driven by climatological models of the ionosphere and thermosphere under a realistic geomagnetic field configuration. EZDrifts is an expansion of the model of the zonal drifts first presented by Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] which was only valid for the Jicamarca longitude sector and two specific solar flux conditions. EZDrifts now uses vertical equatorial plasma drifts from Scherliess & Fejer (1999) [ J Geophys Res 104(A4) : 6829–6842] model which allows it to provide zonal drifts for any day of the year, longitude, and solar flux condition. We show that the model can reproduce the main results of the Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] model for the Peruvian sector. We also illustrate an application of EZDrifts by presenting and discussing longitudinal variabilities produced by the model. We show that the model predicts longitudinal variations in the reversal times of the drifts that are in good agreement with observations made by C/NOFS. EZDrifts also predicts longitudinal variations in the magnitude of the drifts that can be identified in the June solstice observations made by C/NOFS. We also point out data-model differences observed during Equinox and December solstice. Finally, we explain that the longitudinal variations in the zonal plasma drifts are caused by longitudinal variations in the latitude of the magnetic equator and, consequently, in the wind dynamo contributing to the resulting drifts. EZDrifts is distributed to the community through a public repository and can be used in applications requiring an estimate of the overall behavior of the equatorial zonal drifts.  more » « less
Award ID(s):
1916055
NSF-PAR ID:
10435278
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Space Weather and Space Climate
Volume:
13
ISSN:
2115-7251
Page Range / eLocation ID:
8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the results of an analysis of long‐term measurements of ionosphericFregionE × Bplasma drifts in the American/Peruvian sector. The analysis used observations made between 1986 and 2017 by the incoherent scatter radar of the Jicamarca Radio Observatory. Unlike previous studies, we analyzed both vertical and zonal components of the plasma drifts to derive the geomagnetically quiet time climatological variation of the drifts as a function of height and local time. We determine the average behavior of the height profiles of the drifts for different seasons and distinct solar flux conditions. Our results show good agreement with previous height‐averaged climatological results of vertical and zonal plasma drifts, despite that they are obtained from different sets of measurements. More importantly, our results quantify average height variations in the drifts. The results show, for example, the solar flux control over the height variation of the vertical drifts. The results also show the weak dependence of the daytime zonal drift profiles on solar and seasonal variations. We quantify the effects of seasonal and solar flux variations on the morphology of the vertical shear in the zonal plasma drifts associated with the evening plasma vortex. Assuming interchangeability between local time and longitude, we tested the curl‐free condition for theFregion electric fields with very good results for all seasons and solar flux conditions. We envision the use of our results to aid numerical modeling of ionospheric electrodynamics and structuring and to assist with the interpretation of satellite observations of low‐latitude plasma drifts.

     
    more » « less
  2. Abstract

    The effect of eastward zonal wind speed (EZWS) on vertical drift velocity (E × Bdrift) that mainly controls the equatorial ionospheric irregularities has been explained theoretically and through numerical models. However, its effect on the seasonal and longitudinal variations ofE × Band the accompanying irregularities has not yet been investigated experimentally due to lack ofF‐layer wind speed measurements. Observations of EZWS from GOCE and ion density andE × Bfrom C/NOFS satellites for years 2011 and 2012 during quite times are used in this study. Monthly and longitudinal variations of the irregularity occurrence,E × B, and EZWS show similar patterns. We find that at most 50.85% of longitudinal variations ofE × Bcan be explained by the longitudinal variability of EZWS only. When the EZWS exceeds 150 m/s, the longitudinal variation of EZWS, geomagnetic field strength, and Pedersen conductivity explain 56.40–69.20% of the longitudinal variation ofE × B. In Atlantic, Africa, and Indian sectors, from 42.63% to 79.80% of the monthly variations of theE × Bcan be explained by the monthly variations of EZWS only. It is found also that EZWS andE × Bmay be linearly correlated during fall equinox and December solstice. The peak occurrence of irregularity in the Atlantic sector during November and December is due to the combined effect of large wind speed, solar terminator‐geomagnetic field alignment, and small geomagnetic field strength and Pedersen conductivity. Moreover, during June solstices, small EZWS corresponds to vertically downwardE × B, which suggests that other factors dominate theE × Bdrift rather than the EZWS during these periods.

     
    more » « less
  3. Abstract

    We analyze horizontal plasma drifts measured by the Defense Meteorological Satellite Program satellites during two intense magnetic storms. It is found, for the first time, that westward plasma flows associated with subauroral polarization streams (SAPS) in the dusk‐evening sector penetrate continuously to equatorial latitudes. The westward ion drifts between subauroral and equatorial latitudes occur nearly simultaneously. The latitudinal profile of the westward ion drifts at low latitudes (approximately within ±30° magnetic latitude [MLat]) is relatively flat, and the westward ion drifts at the magnetic equator reach 200–300 m s−1. In the dawn‐morning sector, eastward ion drifts at subauroral latitudes are also SAPS. The storm‐time dawnside auroral boundary moves to ∼±55° MLat, and the dawnside SAPS penetrate to ∼±20° MLat at 0930 local time. A dawnside SAPS flow channel appears to exist, although it is not as well defined as the duskside SAPS flow channel. Thermospheric wind data measured by the Challenging Minisatellite Payload satellite are analyzed, and zonal disturbance winds are derived. Disturbance winds can reach equatorial latitudes rapidly near midnight but are limited to ±40° geographic latitude or higher near noon. The effects of disturbance winds on the zonal ion drifts at middle and low latitudes are discussed. It is suggested that both the westward ion drifts at middle and low latitudes in the dusk‐evening sector and the eastward ion drifts at middle and lower latitudes in the dawn‐morning sector are caused primarily by penetration of the SAPS and auroral electric fields.

     
    more » « less
  4. Abstract

    June solstice is considered as a period with the lowest probability to observe typical equatorial plasma bubbles (EPBs) in the postsunset period. The severe geomagnetic storm on 22–23 June 2015 has drastically changed the situation. Penetrating electric fields associated with a long‐lasting southward IMF support favorable conditions for postsunset EPBs generation in the dusk equatorial ionosphere for several hours. As a result, the storm‐induced EPBs were progressively developed over a great longitudinal range following the sunset terminator. The affected area has a large longitudinal range of ~100° in the American sector and a rather localized zone of ~20° in longitude in the African sector. Plasma depletions of equatorial origin were registered at midlatitudes (30°–40° magnetic latitude) of both hemispheres in the African and American longitudinal sectors. We examine global features of the large‐scale plasma depletion by using a combination of ground‐based and space‐borne measurements—ground‐based Global Positioning System/Global Navigation Satellite System (GPS/GNSS) networks, Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) GPS Radio Occultation (RO), Swarm upward looking GPS data, and in situ plasma density observations provided by Swarm, Communications/Navigation Outage Forecasting System (C/NOFS), and Defense Meteorological Satellite Program (DMSP) missions. Joint analysis of the satellite observations revealed that these storm‐induced EPBs structures had extended over 500 km in altitude, at least from ~350 to ~850 km. These irregularities caused strong amplitude and phase scintillations of GPS/GNSS signals for ground‐based and space‐borne (COSMIC RO) measurements and seriously affected performance of navigation‐based services.

     
    more » « less
  5. Abstract

    We used observations from the Peruvian Fabry‐Perot Interferometer network and from the Jicamarca radar to study the coupling of equatorial nighttime thermospheric winds and ionospheric drifts under moderate solar flux conditions. We show that the coupling of the extended quiet time zonal winds and drifts increases from dusk to midnight and is stronger during equinox than during June solstice. After midnight, they are strongly coupled, except during December solstice when the drifts are stronger. The nighttime disturbance zonal winds and drifts, derived by removing the corresponding quiet time values, are westward with peak magnitudes around midnight. They are in close agreement, except at early night when the winds are stronger, and have strongest (weakest) magnitudes during equinox (June solstice). We also present observations showing the strong neutral wind‐plasma drift coupling during the September 2017 and August 2015 large geomagnetic storms. We show that during the early phase of the September 2017 storm there were large and short‐lived, prompt penetration electric field‐driven, correlated oscillations (~1 hr) in the vertical and zonal plasma drifts, and in the zonal and meridional winds. These are the first observations of prompt penetration‐driven equatorial zonal and meridional wind disturbances. In this event, the vertical and zonal drift oscillations were anticorrelated, and the zonal winds followed the zonal drift oscillations with a delay of ~15 min. Our results illustrate the strong coupling of equatorial thermospheric winds and plasma drifts during geomagnetically quiet as well as during short‐lived prompt penetration and long‐lasting disturbance dynamo events.

     
    more » « less