skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low‐Latitude Plasma Drifts From the Horizontal Neutral Wind Model and a Coupled Ionosphere‐Electric Field Model
Abstract Results from a dynamo electric field model are presented to examine the consistency of the widely used empirical models of low‐latitude plasma drifts and thermospheric neutral winds. The sector defined by the Jicamarca Radar measured plasma drifts is used due to the greater certainty of the empirical vertical plasma drifts. The plasma drifts produced by the Horizontal Wind Model (HWM) in a coupled ionosphere‐electric field model for geomagnetically quiet and moderate solar conditions are compared against empirical models of equatorial plasma drifts for the Peruvian sector. The HWM generates reasonable sunset prereversal enhancement of the vertical drift in all but May, June, July, and August when no prereversal enhancement exists in the empirical results. The daytime vertical drifts are deficient during all seasons. A solar diurnal and semi‐diurnal tidal forcing are required in the E region (100–150 km) to bring the HWM into better agreement as a dynamo driver for the daytime electric fields associated with the broad Solar Quiet current system.  more » « less
Award ID(s):
1933056
PAR ID:
10369923
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
7
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a new numerical model developed to assist with Data Interpretation and Numerical Analysis of ionospheric Missions and Observations (DINAMO). DINAMO derives the ionospheric electrostatic potential at low- and mid-latitudes from a two-dimensional dynamo equation and user-specified inputs for the state of the ionosphere and thermosphere (I–T) system. The potential is used to specify the electric fields and associated F -region E × B plasma drifts. Most of the model was written in Python to facilitate the setup of numerical experiments and to engage students in numerical modeling applied to space sciences. Here, we illustrate applications and results of DINAMO in two different analyses. First, DINAMO is used to assess the ability of widely used I–T climatological models (IRI-2016, NRLMSISE-00, and HWM14), when used as drivers, to produce a realistic representation of the low-latitude electrodynamics. In order to evaluate the results, model E × B drifts are compared with observed climatology of the drifts derived from long-term observations made by the Jicamarca incoherent scatter radar. We found that the climatological I–T models are able to drive many of the features of the plasma drifts including the diurnal, seasonal, altitudinal and solar cycle variability. We also identified discrepancies between modeled and observed drifts under certain conditions. This is, in particular, the case of vertical equatorial plasma drifts during low solar flux conditions, which were attributed to a poor specification of the E -region neutral wind dynamo. DINAMO is then used to quantify the impact of meridional currents on the morphology of F -region zonal plasma drifts. Analytic representations of the equatorial drifts are commonly used to interpret observations. These representations, however, commonly ignore contributions from meridional currents. Using DINAMO we show that that these currents can modify zonal plasma drifts by up to ~ 16 m/s in the bottom-side post-sunset F -region, and up to ~ 10 m/s between 0700 and 1000 LT for altitudes above 500 km. Finally, DINAMO results show the relationship between the pre-reversal enhancement (PRE) of the vertical drifts and the vertical shear in the zonal plasma drifts with implications for equatorial spread F. 
    more » « less
  2. We introduce the implementation of a global climatological model of the equatorial ionospheric F-region zonal drifts (EZDrifts) that is made available to the public. The model uses the analytic description of the zonal plasma drifts presented by Haerendel et al. (1992) [ J Geophys Res 97(A2) : 1209–1223] and is driven by climatological models of the ionosphere and thermosphere under a realistic geomagnetic field configuration. EZDrifts is an expansion of the model of the zonal drifts first presented by Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] which was only valid for the Jicamarca longitude sector and two specific solar flux conditions. EZDrifts now uses vertical equatorial plasma drifts from Scherliess & Fejer (1999) [ J Geophys Res 104(A4) : 6829–6842] model which allows it to provide zonal drifts for any day of the year, longitude, and solar flux condition. We show that the model can reproduce the main results of the Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] model for the Peruvian sector. We also illustrate an application of EZDrifts by presenting and discussing longitudinal variabilities produced by the model. We show that the model predicts longitudinal variations in the reversal times of the drifts that are in good agreement with observations made by C/NOFS. EZDrifts also predicts longitudinal variations in the magnitude of the drifts that can be identified in the June solstice observations made by C/NOFS. We also point out data-model differences observed during Equinox and December solstice. Finally, we explain that the longitudinal variations in the zonal plasma drifts are caused by longitudinal variations in the latitude of the magnetic equator and, consequently, in the wind dynamo contributing to the resulting drifts. EZDrifts is distributed to the community through a public repository and can be used in applications requiring an estimate of the overall behavior of the equatorial zonal drifts. 
    more » « less
  3. Abstract In this work, it is demonstrated that substorm‐driven penetration electric fields can efficiently enhance the upward plasma transport, favoring the development and structuring of plasma irregularities and the occurrence of scintillation on L‐band signals. While most previous studies focus on investigating penetration electric fields during intense geomagnetic storms, here, the period used (April 01–05, 2020) was under very mild geomagnetic activity (−27 nT SYM‐H 6 nT), so that interplanetary and disturbance dynamo contributions are minimized. This period comprised the same seasonal and solar flux conditions, while undergoing multiple short‐lived substorms, making it well‐suited to evaluate unequivocally: (a) to what extent substorm‐driven penetration electric fields alter electrodynamical processes over low latitudes, and (b) how effective they are in contributing to the structuring of the early nighttime ionosphere and the subsequent occurrence of severe scintillation on L‐band signals. Ground‐based and space‐based multi‐instrument data sets were used. The results show that, even under weak geomagnetic activity, substorm‐driven penetration electric fields—despite being subtle and short‐lived—play a decisive role, enhancing the upward drifts, favoring the development of equatorial plasma bubbles and severe scintillation. The findings indicate that substorms with onsets coinciding with early nighttime are more impactful. This decisive contribution is more likely to be identified during late spring and early fall in the northern hemisphere (or vice versa in the southern hemisphere), when the prereversal vertical drifts are moderate—neither too small nor too large—and may have direct impacts on the day‐to‐day variability of equatorial plasma bubbles. 
    more » « less
  4. Abstract The strongest geomagnetic storm in the preceding two decades occurred in May 2024. Over these years, ground‐based observational capabilities have been significantly enhanced to monitor the ionospheric weather. Notably, the newly established Sanya incoherent scatter radar (SYISR) (Yue, Wan, Ning, & Jin, 2022,https://doi.org/10.1038/s41550‐022‐01684‐1), one of the critical infrastructures of the Chinese “Meridian Project,” provides multiple parameter measurements in the upper atmosphere at low latitudes over Asian longitudies. Unique ionospheric changes on superstorm day 11 May were first recorded by the SYISR experiments and the geostationary satellite (GEO) total electron content (TEC) network over the Asian sector. The electron density or TEC displayed wavelike structures rather than a regular diurnal pattern. Surprisingly, two humps, a common feature in the daytime equatorial ionization anomaly structure, disappeared. The SYISR observations revealed that multiple wind surges accompanied the downward phase propagation caused by atmospheric gravity waves (AGWs) originating from auroral zones. Meanwhile, strong upward and large downward drifts were respectively observed in the daytime and around sunset. The Thermosphere‐Ionosphere Electrodynamics Global Circulation Model (TIEGCM) simulations demonstrated that abnormal ionospheric changes were attributed to meridional wind disturbances associated with AGWs and recurrent penetration electric fields corresponding to largerBzsouthward excursions and disturbance dynamo. The complicated interplay between AGWs and disturbance electric fields contributed to this unique ionospheric variation. 
    more » « less
  5. Abstract Jicamarca Radio Observatory observations and Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) simulations are used to investigate the effects of the 7 September 2005 X‐17 solar flare on 150‐km echoes, electron densities, and vertical plasma drifts. The solar flare produces a remarkably similar response in the observed 150‐km echoes and simulated electron densities. The results provide additional evidence of the relationship between the background electron density and the layering structure that is seen in 150‐km echoes. The simulations also capture a similar rapid decrease in vertical plasma drift velocity that is seen in the observations. The simulated change in vertical plasma drift is, however, weaker than the observed decrease at the longitude of Jicamarca, though it is stronger east of Jicamarca. The effect of the solar flare on the vertical plasma drifts is primarily attributed to changes in conductivity due to the enhanced ionization during the solar flare. 
    more » « less