Traditional manual building code compliance checking is costly, time-consuming, and human error-prone. With the adoption of Building Information Modeling (BIM), automation in such a checking process becomes more feasible. However, existing methods still face limited automation when applied to different building codes. To address that, in this paper, the authors proposed a new framework that requires minimal input from users and strives for full automation, namely, the Invariant signature, logic reasoning, and Semantic Natural language processing (NLP)-based Automated building Code compliance Checking (I-SNACC) framework. The authors developed an automated building code compliance checking (ACC) prototype system under this framework and tested it on Chapter 10 of the International Building Codes 2015 (IBC 2015). The system was tested on two real projects and achieved 95.2% precision and 100% recall in non-compliance detection. The experiment showed that the framework is promising in building code compliance checking. Compared to the state-of-the-art methods, the new framework increases the degree of automation and saves manual efforts for finding non-compliance cases.
more »
« less
Chapter 13: Building information modeling, natural language processing, and artificial intelligence for automated compliance checking
The digital and integrated representation of the physical and functional characteristics of buildings enabled by building information modeling (BIM) provides a computational environment for automated compliance checking (ACC) of building designs. The integration of natural language processing (NLP) and artificial intelligence (AI) with BIM brings further opportunities for ACC – it can empower BIM with text analytics and AI capabilities, thereby injecting intelligence and automation in the compliance checking processes. This chapter highlights emerging approaches that aim to facilitate and harness the marriage of BIM, NLP, and AI to enable the next generation of automated compliance checking systems (ACC) systems. This chapter (1) reviews different types of BIM-based ACC systems that leverage NLP and AI techniques, (2) discusses how NLP and AI techniques are applied in regulatory text analytics tasks and BIM information analytics tasks in the context of ACC, and (3) discusses the future trends of BIM-based ACC systems.
more »
« less
- Award ID(s):
- 1827733
- PAR ID:
- 10347911
- Editor(s):
- Lu, W.; Anumba, C.
- Date Published:
- Journal Name:
- Research Companion to Building Information Modeling
- Page Range / eLocation ID:
- 248-267
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Issa, R. (Ed.)Automated checking of the compliance of building information modeling (BIM)-based building designs with relevant codes and regulations requires bridging the semantic gap between the Industry Foundation Classes (IFC) schema and the natural language. In most of the existing automated compliance checking (ACC) systems, the integration of the IFC schema and natural language is realized through hardcoding or predefined rules, ontologies, or dictionaries. These methods require intensive manual engineering effort and are often rigid and difficult to generalize. There is, thus, a need for an automated and meanwhile flexible and generalizable information integration method. To address this need, this paper leverages transformer-based language models to learn the semantic representations of concepts in the building information models (BIMs) and regulatory documents. An automated IFC-regulatory information integration approach based on these learned semantic representations is proposed. The preliminary experimental results show that the proposed approach achieved promising performance—an accuracy of 80%—on integrating IFC and regulatory concepts.more » « less
-
Steinmetz, A. (Ed.)Manual building code compliance checking is a time-consuming, labor-intensive and error-prone process. Automated logic-based reasoning is an essential step in the automation of this process. There have been previous studies using logic programming languages for automated logic-based reasoning to support automated compliance checking (ACC) of building designs with building codes. As a high-performance implementation of the standard logic programming language, B-Prolog was widely used in these studies. However, due to the support of dynamic predicates and user-defined operators, the predicates’ functions vary according to different user definitions; therefore, B-Prolog is sometimes not reliable for building code reasoning. As a more expressive, scalable, and reliable alterative to B-Prolog, Picat, a logic-based multi-paradigm programming language, provides a new and potentially more powerful platform for automated logic-based reasoning in ACC. To explore the potential value of Picat in ACC, in this study, the authors compared Picat and B-Prolog performance in automatically checking 20 requirement rules in the 2015 International Building Code. The experimental results showed that the automated checking for building codes in the B-Prolog version was faster than that in the Picat version, whereas the Picat version was more reliable than the B-Prolog version. This could be the result of B-Prolog using unifica-tion and Picat using pattern matching for indexing rules. More potential applications of Picat in ACC domain need further research. Furthermore, this schema could be used in the teaching of ACC to graduate construction students, illustrating the need to focus on the reliability, predictability and scalability of the process, in order to provide a practical solution to improving code compliance checking processes.more » « less
-
As the number, size and complexity of building construction projects increase, code compliance checking becomes more challenging because of the time-consuming, costly, and error-prone nature of a manual checking process. A fully automated code compliance checking would be desirable in facilitating a more efficient, cost effective, and human error-proof code checking. Such automation requires automated information extraction from building designs and building codes, and automated information transformation to a format that allows automated reasoning. Natural Language Processing (NLP) is an important technology to support such automated processing of building codes, because building codes are represented in natural language texts. Part-of-speech (POS) tagging, as an important basis of NLP tasks, must have a high performance to ensure the quality of the automated processing of building codes in such a compliance checking system. However, no systematic testing of existing POS taggers on domain specific building codes data have been performed. To address this gap, the authors analyzed the performance of seven state-of-the-at POS taggers on tagging building codes and compared their results to a manually-labeled gold standard. The authors aim to: (1) find the best performing tagger in terms of accuracy, and (2) identify common sources of errors. In providing the POS tags, the authors used the Penn Treebank tagset, which is a widely used tagset with a proper balance between conciseness and information richness. An average accuracy of 88.80% was found on the testing data. The Standford coreNLP tagger outperformed the other taggers in the experiment. Common sources of errors were identified to be: (1) word ambiguity, (2) rare words, and (3) unique meaning of common English words in the construction context. The found result of machine taggers on building codes calls for performance improvement, such as error-fixing transformational rules and machine taggers that are trained on building codes.more » « less
-
To facilitate a better understanding of building codes, the visualization of the embedded structures of the provisions and requirements of the codes is needed. Existing research efforts in building code compliance checking mostly do not purposefully represent building codes in formats that facilitate human understanding and interaction with the codes, such as XML and hypertext (text with links to other text). Visual programming commonly represents building codes more visually as flowcharts. However, flowcharts are static, and the generation of flowcharts is still manual. To address this lack of interactive visual representation of building code requirement structures, this paper proposes an automated building code structure extraction and visualization method for visualizing building code contents in a way that clearly shows the inter-connections between requirements and allows intuitive user interaction. In this method, to extract the chapter-section-subsection hierarchical structure and cross-reference structure, a new extraction method named Building Code Network Generator (BCNG) is proposed to automatically generate an interactive visualization using a directed network. The performance of the proposed BCNG was empirically tested on Chapters 5 and 10 of the International Building Code 2015, with a resulting precision, recall, and F1-score of 99.4%, 96.3%, and 97.8%, respectively. In addition, the extracted hierarchical and cross-reference structures were displayed using an open-source network visualization tool to facilitate human understanding and interactions with the building code requirements in automated compliance checking systems.more » « less