skip to main content


Title: The evolution of the barred galaxy population in the TNG50 simulation
ABSTRACT We use the magnetic-hydrodynamical simulation TNG50 to study the evolution of barred massive disc galaxies. Massive spiral galaxies are already present as early as z = 4, and bar formation takes place already at those early times. The bars grow longer and stronger as the host galaxies evolve, with the bar sizes increasing at a pace similar to that of the disc scalelengths. The bar fraction mildly evolves with redshift for galaxies with $M_{*}\ge 10^{10}\rm M_{\odot }$, being greater than $\sim 40{{\ \rm per\ cent}}$ at 0.5 < z < 3 and $\sim 30{{\ \rm per\ cent}}$ at z = 0. When bars larger than a given physical size ($\ge 2\, \rm kpc$) or the angular resolution limit of twice the I-band angular PSF FWHM of the HST are considered, the bar fraction dramatically decreases with increasing redshift, reconciling the theoretical predictions with observational data. We find that barred galaxies have an older stellar population, lower gas fractions, and star formation rates than unbarred galaxies. In most cases, the discs of barred galaxies assembled earlier and faster than the discs of unbarred galaxies. We also find that barred galaxies are typical in haloes with larger concentrations and smaller spin parameters than unbarred galaxies. Furthermore, the inner regions of barred galaxies are more baryon-dominated than those of unbarred galaxies but have comparable global stellar mass fractions. Our findings suggest that the bar population could be used as a potential tracer of the buildup of disc galaxies and their host haloes. With this paper, we release a catalogue of barred galaxies in TNG50 at six redshifts between z = 4 and 0.  more » « less
Award ID(s):
1814259
NSF-PAR ID:
10348020
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5339 to 5357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Using a volume- and mass-limited (D < 30 Mpc, $\log \, (M_{\star }/M_{\odot })\ge 9.75$) sample of 155 barred S0–Sd galaxies, I determine the fraction with secondary structures within their bars. Some 20 ± 3 per cent have a separate inner bar, making them double-barred; an identical fraction have nuclear rings, with $11^{+3}_{-2}$ per cent hosting both. The inner-bar frequency is a strong, monotonic function of stellar mass: only $4^{+3}_{-2}$ per cent of barred galaxies with $\log \, (M_{\star }/M_{\odot })= 9.75$–10.25 are double-barred, while 47 ± 8 per cent of those with $\log \, (M_{\star }/M_{\odot })\gt 10.5$ are. The nuclear-ring frequency is a strong function of absolute bar size: only $1^{+2}_{-1}$ per cent of bars with semimajor axes <2 kpc have nuclear rings, while $39^{+6}_{-5}$ per cent of larger bars do. Both inner bars and nuclear rings are absent in very late-type (Scd–Sd) galaxies. Inner bar size correlates with galaxy stellar mass, but is clearly offset to smaller sizes from the main population of bars. This makes it possible to define ‘nuclear bars’ in a consistent fashion, based on stellar mass. There are eight single-barred galaxies where the bars are nuclear-bar-sized; some of these may be systems where an outer bar failed to form, or previously double-barred galaxies where the outer bar has dissolved. Inner bar size is even more tightly correlated with host bar size, which is likely the primary driver. In contrast, nuclear ring size is only weakly correlated with galaxy mass or bar size, with more scatter in size than is true of inner bars.

     
    more » « less
  2. null (Ed.)
    ABSTRACT This paper presents a survey of Mg ii absorbing gas in the vicinity of 380 random galaxies, using 156 background quasi-stellar objects (QSOs) as absorption-line probes. The sample comprises 211 isolated (73 quiescent and 138 star-forming galaxies) and 43 non-isolated galaxies with sensitive constraints for both Mg ii absorption and H α emission. The projected distances span a range from d = 9 to 497 kpc, redshifts of the galaxies range from z = 0.10 to 0.48, and rest-frame absolute B-band magnitudes range from MB = −16.7 to −22.8. Our analysis shows that the rest-frame equivalent width of Mg ii, Wr(2796), depends on halo radius (Rh), B-band luminosity(LB), and stellar mass (Mstar) of the host galaxies, and declines steeply with increasing d for isolated, star-forming galaxies. At the same time, Wr(2796) exhibits no clear trend for either isolated, quiescent galaxies or non-isolated galaxies. In addition, the covering fraction of Mg ii absorbing gas 〈κ〉 is high with 〈κ〉 ≳ 60 per cent at <40 kpc for isolated galaxies and declines rapidly to 〈κ〉 ≈ 0 at d ≳ 100 kpc. Within the gaseous radius, the incidence of Mg ii gas depends sensitively on both Mstar and the specific star formation rate inferred from H α. Different from what is known for massive quiescent haloes, the observed velocity dispersion of Mg ii absorbing gas around star-forming galaxies is consistent with expectations from virial motion, which constrains individual clump mass to $m_{\rm cl} \gtrsim 10^5 \, \rm M_\odot$ and cool gas accretion rate of $\sim 0.7\!-\!2 \, \mathrm{ M}_\odot \, \rm yr^{-1}$. Finally, we find no strong azimuthal dependence of Mg ii absorption for either star-forming or quiescent galaxies. Our results demonstrate that multiple parameters affect the properties of gaseous haloes around galaxies and highlight the need of a homogeneous, absorption-blind sample for establishing a holistic description of chemically enriched gas in the circumgalactic space. 
    more » « less
  3. ABSTRACT

    We use numerical simulations to follow evolution of barred galaxies in a suite of models with progressively more massive stellar bulges, with bulge-to-total (disc+bulge) mass ratios of B/T ∼ 0–0.25, embedded in dark matter (DM) haloes with spin $\lambda\sim 0\!-\!0.09$. We focus on models with a sequence of initial rotational support for bulges, and analyse their spinup and spindown. We find that (1) the presence of a bulge affects evolution of bars, i.e. the time-scale of bar instability, bar pattern speed, and its decay, and the vertical buckling instability. Bar strength is nearly independent of B/T in haloes with spin $\lambda=0$, and is suppressed by a factor ∼2 for haloes with $\lambda=0.09$; (2) The main effect of the bulge is the destruction of the harmonic core which affects the buckling; (3) The bulge plays a minor role in the exchange of angular momentum between the barred disc and the DM halo, during its spinup and spindown; (4) Buckling process triggers different response above/below the disc mid-plane, which anticorrelates with the bulge mass; (5) In spinning haloes, the buckling process has a prolonged amplitude tail, extending by few Gyr, as verified by measuring distortions in the Laplace plane; (6) Furthermore, as verified by orbital spectral analysis, the bulge gains its spin from the bar mainly via the inner Lindblad resonance, while losing it via a number of resonances lying between the outer and inner Lindblad resonance. The corollary is that we do not expect to find non-rotating bulges in barred galaxies.

     
    more » « less
  4. ABSTRACT

    Recent observations indicate that galactic outflows are ubiquitous in high-redshift (high-z) galaxies, including normal star-forming galaxies, quasar hosts, and dusty star-forming galaxies (DSFGs). However, the impact of outflows on the evolution of their hosts is still an open question. Here, we analyse the star-formation histories and galactic outflow properties of galaxies in massive haloes ($10^{12}\, {\rm M}_{\odot }\ \lt\ M_{\rm vir}\ \lt\ 5\times 10^{12}\, {\rm M}_{\odot }$) at z ≳ 5.5 in three zoom-in cosmological simulations from the MassiveFIRE suite, as part of the Feedback In Realistic Environments (FIRE) project. The simulations were run with the FIRE-2 model, which does not include feedback from active galactic nuclei. The simulated galaxies resemble z > 4 DSFGs, with star-formation rates of $\sim\!{1000}\ {\rm M}_{\odot }\, \rm yr^{-1}$ and molecular gas masses of Mmol ∼ 1010 M⊙. However, the simulated galaxies are characterized by higher circular velocities than those observed in high-z DSFGs. The mass loading factors from stellar feedback are of the order of ∼0.1, implying that stellar feedback is inefficient in driving galactic outflows and gas is consumed by star formation on much shorter time-scales than it is expelled from the interstellar medium. We also find that stellar feedback is highly inefficient in self-regulating star formation in this regime, with an average integrated star formation efficiency (SFE) per dynamical time of 30 per cent. Finally, compared with FIRE-2 galaxies hosted in similarly massive haloes at lower redshift, we find lower mass loading factors and higher SFEs in the high-z sample. We argue that both effects originate from the higher total and gas surface densities that characterize high-z massive systems.

     
    more » « less
  5. ABSTRACT

    We quantify the impact of galaxy formation on dark matter halo shapes using cosmological simulations at redshift z = 0. Using magnetohydrodynamic simulations from the IllustrisTNG project, we focus on haloes of mass $10^{10\!-\!14} \, \rm M_{\odot }$ from the 50 Mpc (TNG50) and 100 Mpc (TNG100) boxes and compare them to dark matter-only (DMO) analogues and other simulations, e.g. Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) and Evolution and Assembly of GaLaxies and their Environments (EAGLE). We further quantify the prediction uncertainty by varying the feedback models using smaller 25 ${\rm Mpc}\, h^{-1}$ boxes. We find that (i) galaxy formation results in rounder haloes compared to DMO simulations, in qualitative agreement with past results. Haloes of mass ${\approx }2\times 10^{12} \, \rm M_{\odot }$ are most spherical, with an average minor-to-major axial ratio of $\langle s \rangle$ ≈ 0.75 in the inner halo, an increase of 40 per cent compared to their DMO counterparts. No significant difference is present for low-mass $10^{10} \, \rm M_{\odot }$ haloes; (ii) stronger feedback, e.g. increasing galactic wind speed, reduces the impact of baryons; (iii) the inner halo shape correlates with the stellar mass fraction, explaining the dependence of halo shapes on feedback models; and (iv) the fiducial and weaker feedback models are most consistent with observational estimates of the Milky Way halo shape. At fixed halo mass, very diverse and possibly unrealistic feedback models all predict inner shapes closer to one another than to the DMO results. Because of the large halo-to-halo variation in halo shape, a larger observational sample is required to statistically distinguish different baryonic prescriptions.

     
    more » « less