skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Covering action on Conley index theory
Abstract In this paper we apply Conley index theory in a covering space of an invariant set S , possibly not isolated, in order to describe the dynamics in S . More specifically, we consider the action of the covering translation group in order to define a topological separation of S which distinguishes the connections between the Morse sets within a Morse decomposition of S . The theory developed herein generalizes the classical connection matrix theory, since one obtains enriched information on the connection maps for non-isolated invariant sets, as well as for isolated invariant sets. Moreover, in the case of an infinite cyclic covering induced by a circle-valued Morse function, one proves that the Novikov differential of f is a particular case of the p -connection matrix defined herein.  more » « less
Award ID(s):
1934924
PAR ID:
10354996
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Ergodic Theory and Dynamical Systems
ISSN:
0143-3857
Page Range / eLocation ID:
1 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Xavier Goaoc; Michael Kerber (Ed.)
    Multivector fields and combinatorial dynamical systems have recently become a subject of interest due to their potential for use in computational methods. In this paper, we develop a method to track an isolated invariant set - a salient feature of a combinatorial dynamical system - across a sequence of multivector fields. This goal is attained by placing the classical notion of the "continuation" of an isolated invariant set in the combinatorial setting. In particular, we give a "Tracking Protocol" that, when given a seed isolated invariant set, finds a canonical continuation of the seed across a sequence of multivector fields. In cases where it is not possible to continue, we show how to use zigzag persistence to track homological features associated with the isolated invariant sets. This construction permits viewing continuation as a special case of persistence. 
    more » « less
  2. We consider the KZ equations over C in the case, when the hypergeometric solutions are hyperelliptic integrals of genus g. Then the space of solutions is a 2g-dimensional complex vector space. We also consider the same equations modulo ps, where p is an odd prime and s is a positive integer, and over the field Q_p of p-adic numbers. We construct polynomial solutions of the KZ equations modulo ps and study the space Mps of all constructed solutions. We show that the p-adic limit of Mps as s→∞ gives us a g-dimensional vector space of solutions of the KZ equations over Qp. The solutions over Qp are power series at a certain asymptotic zone of the KZ equations. In the appendix written jointly with Steven Sperber we consider all asymptotic zones of the KZ equations in the case g=1 of elliptic integrals. The p-adic limit of Mps as s→∞ gives us a one-dimensional space of solutions over Qp at every asymptotic zone. We apply Dwork's theory and show that our germs of solutions over Qp defined at different asymptotic zones analytically continue into a single global invariant line subbundle of the associated KZ connection. Notice that the corresponding KZ connection over C does not have proper nontrivial invariant subbundles, and therefore our invariant line subbundle is a new feature of the KZ equations over Qp. We describe the Frobenius transformations of solutions of the KZ equations for g=1 and then recover the unit roots of the zeta functions of the elliptic curves defined by the equations y2=βx(x−1)(x−α) over the finite field Fp. Here α,β∈F×p,α≠1 
    more » « less
  3. null (Ed.)
    A combinatorial framework for dynamical systems provides an avenue for connecting classical dynamics with data-oriented, algorithmic methods. Combinatorial vector fields introduced by Forman [R. Forman, 1998; R. Forman, 1998] and their recent generalization to multivector fields [Mrozek, 2017] have provided a starting point for building such a connection. In this work, we strengthen this relationship by placing the Conley index in the persistent homology setting. Conley indices are homological features associated with so-called isolated invariant sets, so a change in the Conley index is a response to perturbation in an underlying multivector field. We show how one can use zigzag persistence to summarize changes to the Conley index, and we develop techniques to capture such changes in the presence of noise. We conclude by developing an algorithm to "track" features in a changing multivector field. 
    more » « less
  4. Abstract We automate the process of machine learning correlations between knot invariants. For nearly 200 000 distinct sets of input knot invariants together with an output invariant, we attempt to learn the output invariant by training a neural network on the input invariants. Correlation between invariants is measured by the accuracy of the neural network prediction, and bipartite or tripartite correlations are sequentially filtered from the input invariant sets so that experiments with larger input sets are checking for true multipartite correlation. We rediscover several known relationships between polynomial, homological, and hyperbolic knot invariants, while also finding novel correlations which are not explained by known results in knot theory. These unexplained correlations strengthen previous observations concerning links between Khovanov and knot Floer homology. Our results also point to a new connection between quantum algebraic and hyperbolic invariants, similar to the generalized volume conjecture. 
    more » « less
  5. In this paper we explore partial coherence as a tool for evaluating the causal, anti-causal, or mixed-causal dependence of one time series on another. The key idea is to establish a connection between questions of causality and partial coherence. Once this connection is established, then a scale-invariant partial coherence statistic is used to resolve the question of temporal causality. This coherence statistic is shown to be a likelihood ratio. It may be computed from a composite covariance matrix or from its inverse, the information matrix. Numerical experiments demonstrate the application of partial coherence to the resolution of temporal causality. 
    more » « less