A concentration-gradient composition is proposed as an effective approach to solve the mechanical degradation and improve the electrochemical cyclability for cathodes of sodium-ion batteries. Concentration-gradient shell NaxNiyMn1-yFe(CN)6·nH2O, in which the Ni content gradually increases from the interior to the particle surface, is synthesized by a facile co-precipitation process. The as-obtained cathode exhibits an improved electrochemical performance compared to homogeneous NaxMnFe(CN)6·nH2O, delivering a high reversible specific capacity of 110 mA h g-1 at 0.2 C and outstanding cycling stability (93% retention after 1000 cycles at 5 C). The improvement of electrochemical performance can be attributed to its robust microstructure that effectively alleviates the electrochemically induced stresses and accumulated damage during sodiation/desodiation and thus prevents the initiation of fracture in the particles upon long term cycling. These findings render a prospective strategy to develop high-performance electrode materials for sodium-ion batteries.
more »
« less
Nanostructured Molybdenum-Oxide Anodes for Lithium-Ion Batteries: An Outstanding Increase in Capacity
This work aimed at synthesizing MoO3 and MoO2 by a facile and cost-effective method using extract of orange peel as a biological chelating and reducing agent for ammonium molybdate. Calcination of the precursor in air at 450 °C yielded the stochiometric MoO3 phase, while calcination in vacuum produced the reduced form MoO2 as evidenced by X-ray powder diffraction, Raman scattering spectroscopy, and X-ray photoelectron spectroscopy results. Scanning and transmission electron microscopy images showed different morphologies and sizes of MoOx particles. MoO3 formed platelet particles that were larger than those observed for MoO2. MoO3 showed stable thermal behavior until approximately 800 °C, whereas MoO2 showed weight gain at approximately 400 °C due to the fact of re-oxidation and oxygen uptake and, hence, conversion to stoichiometric MoO3. Electrochemically, traditional performance was observed for MoO3, which exhibited a high initial capacity with steady and continuous capacity fading upon cycling. On the contrary, MoO2 showed completely different electrochemical behavior with less initial capacity but an outstanding increase in capacity upon cycling, which reached 1600 mAh g−1 after 800 cycles. This outstanding electrochemical performance of MoO2 may be attributed to its higher surface area and better electrical conductivity as observed in surface area and impedance investigations.
more »
« less
- Award ID(s):
- 1936406
- PAR ID:
- 10348119
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A concentration-gradient composition is proposed as an effective approach to solve the mechanical degradation and improve the electrochemical cyclability for cathodes of sodium-ion batteries. Concentration-gradient shell NaxNiyMn1-yFe(CN)6·nH2O, in which the Ni content gradually increases from the interior to the particle surface, is synthesized by a facile co-precipitation process. The as-obtained cathode exhibits an improved electrochemical performance compared to homogeneous NaxMnFe(CN)6·nH2O, delivering a high reversible specific capacity of 110 mA h g-1 at 0.2 C and outstanding cycling stability (93% retention after 1000 cycles at 5 C). The improvement of electrochemical performance can be attributed to its robust microstructure that effectively alleviates the electrochemically induced stresses and accumulated damage during sodiation/desodiation and thus prevents the initiation of fracture in the particles upon long term cycling. These findings render a prospective strategy to develop high-performance electrode materials for sodium-ion batteries.more » « less
-
Potassium is used extensively as a promoter with iron catalysts in Fisher–Tropsch synthesis, water–gas shift reactions, steam reforming, and alcohol synthesis. In this paper, the identification of potassium chemical states on the surface of iron catalysts is studied to improve our understanding of the catalytic system. Herein, potassium-doped iron oxide (α-Fe2O3) nanomaterials are synthesized under variable calcination temperatures (400–800 °C) using an incipient wetness impregnation method. The synthesis also varies the content of potassium nitrate deposited on superfine iron oxide with a diameter of 3 nm (Nanocat®) to reach atomic ratios of 100 Fe:x K (x = 0–5). The structure, composition, and properties of the synthesized materials are investigated by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared, Raman spectroscopy, inductively coupled plasma-atomic emission spectroscopy, and X-ray photoelectron spectroscopy, as well as transmission electron microscopy, with energy-dispersive X-ray spectroscopy and selected area electron diffraction. The hematite phase of iron oxide retains its structure up to 700 °C without forming any new mixed phase. For compositions as high as 100 Fe:5 K, potassium nitrate remains stable up to 400 °C, but at 500 °C, it starts to decompose into nitrites and, at only 800 °C, it completely decomposes to potassium oxide (K2O) and a mixed phase, K2Fe22O34. The doping of potassium nitrate on the surface of α-Fe2O3 provides a new material with potential applications in Fisher–Tropsch catalysis, photocatalysis, and photoelectrochemical processes.more » « less
-
Aqueous Zn/MnO 2 batteries with their environmental sustainability and competitive cost, are becoming a promising, safe alternative for grid-scale electrochemical energy storage. Presented as a promising design principle to deliver a higher theoretical capacity, this work offers fundamental understanding of the dissolution–deposition mechanism of Zn/β-MnO 2 . A multimodal synchrotron characterization approach including three operando X-ray techniques (powder diffraction, absorption spectroscopy, and fluorescence microscopy) is coupled with elementally resolved synchrotron X-ray nano-tomography. Together they provide a direct correlation between structural evolution, reaction chemistry, and 3D morphological changes. Operando synchrotron X-ray diffraction and spectroscopy show a crystalline-to-amorphous phase transition. Quantitative modeling of the operando data by Rietveld refinement for X-ray diffraction and multivariate curve resolution (MCR) for X-ray absorption spectroscopy are used in a complementary fashion to track the structural and chemical transitions of both the long-range (crystalline phases) and short-range (including amorphous phases) ordering upon cycling. Scanning X-ray microscopy and full-field nano-tomography visualizes the morphology of electrodes at different electrochemical states with elemental sensitivity to spatially resolve the formation of the Zn- and Mn-containing phases. Overall, this work critically indicates that for Zn/MnO 2 aqueous batteries, the reaction pathways involving Zn–Mn complex formation upon cycling become independent of the polymorphs of the initial electrode and sheds light on the interplay among structural, chemical, and morphological evolution for electrochemically driven phase transitions.more » « less
-
Abstract Nonaqueous sodium-based batteries are ideal candidates for the next generation of electrochemical energy storage devices. However, despite the promising performance at ambient temperature, their low-temperature (e.g., < 0 °C) operation is detrimentally affected by the increase in the electrolyte resistance and solid electrolyte interphase (SEI) instability. Here, to circumvent these issues, we propose specific electrolyte formulations comprising linear and cyclic ether-based solvents and sodium trifluoromethanesulfonate salt that are thermally stable down to −150 °C and enable the formation of a stable SEI at low temperatures. When tested in the Na||Na coin cell configuration, the low-temperature electrolytes enable long-term cycling down to −80 °C. Via ex situ physicochemical (e.g., X-ray photoelectron spectroscopy, cryogenic transmission electron microscopy and atomic force microscopy) electrode measurements and density functional theory calculations, we investigate the mechanisms responsible for efficient low-temperature electrochemical performance. We also report the assembly and testing between −20 °C and −60 °C of full Na||Na 3 V 2 (PO 4 ) 3 coin cells. The cell tested at −40 °C shows an initial discharge capacity of 68 mAh g −1 with a capacity retention of approximately 94% after 100 cycles at 22 mA g −1 .more » « less
An official website of the United States government

