Highland native Andeans have resided at altitude for millennia. They display high aerobic capacity (VO 2 max) at altitude, which may be a reflection of genetic adaptation to hypoxia. Previous genomewide (GW) scans for natural selection have nominated Egl-9 homolog 1 gene ( EGLN1 ) as a candidate gene. The encoded protein, EGLN1/PHD2, is an O 2 sensor that controls levels of the Hypoxia Inducible Factor-α (HIF-α), which regulates the cellular response to hypoxia. From GW association and analysis of covariance performed on a total sample of 429 Peruvian Quechua and 94 US lowland referents, we identified 5 EGLN1 SNPs associated with higher VO 2 max (L⋅min −1 and mL⋅min −1 ⋅kg −1 ) in hypoxia (rs1769793, rs2064766, rs2437150, rs2491403, rs479200). For 4 of these SNPs, Quechua had the highest frequency of the advantageous (high VO 2 max) allele compared with 25 diverse lowland comparison populations from the 1000 Genomes Project. Genotype effects were substantial, with high versus low VO 2 max genotype categories differing by ∼11% (e.g., for rs1769793 SNP genotype TT = 34.2 mL⋅min −1 ⋅kg −1 vs. CC = 30.5 mL⋅min −1 ⋅kg −1 ). To guard against spurious association, we controlled for population stratification. Findings were replicated for EGLN1 SNP rs1769793 in an independent Andean sample collected in 2002. These findings contextualize previous reports of natural selection at EGLN1 in Andeans, and support the hypothesis that natural selection has increased the frequency of an EGLN1 causal variant that enhances O 2 delivery or use during exercise at altitude in Peruvian Quechua.
more »
« less
Genetic diversity and population structure of Leishmania (Viannia) braziliensis in the Peruvian jungle
Background Human cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis is highly prevalent in the Peruvian jungle, where it affects military forces deployed to fight against drug trafficking and civilian people that migrate from the highland to the lowland jungle for economic activities such as mining, agriculture, construction, and chestnut harvest. We explored the genetic diversity and population structure of 124 L . (V . ) braziliensis isolates collected from the highland (Junín, Cusco, and Ayacucho) and lowland Peruvian jungle (Loreto, Ucayali, and Madre de Dios). All samples were genotyped using Multilocus Microsatellite Typing (MLMT) of ten highly polymorphic markers. Principal findings High polymorphism and genetic diversity were found in Peruvian isolates of L . (V . ) braziliensis . Most markers are not in Hardy-Weinberg equilibrium; this deviation is most likely caused by local inbreeding, as shown by the positive F IS values. Linkage Disequilibrium in subpopulations was not strong, suggesting the reproduction was not strictly clonal. Likewise, for the first time, two genetic clusters of this parasite were determined, distributed in both areas of the Peruvian jungle, which suggested a possible recent colonization event of the highland jungle from the lowland jungle. Conclusions L . (V . ) braziliensis exhibits considerable genetic diversity with two different clusters in the Peruvian jungle. Migration analysis suggested a colonization event between geographical areas of distribution. Although no human migration was observed at the time of sampling, earlier displacement of humans, reservoirs, or vectors could have been responsible for the parasite spread in both regions.
more »
« less
- Award ID(s):
- 1564822
- PAR ID:
- 10348125
- Editor(s):
- Schönian, Gabriele
- Date Published:
- Journal Name:
- PLOS Neglected Tropical Diseases
- Volume:
- 16
- Issue:
- 5
- ISSN:
- 1935-2735
- Page Range / eLocation ID:
- e0010374
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Genetic variation in parasites has important consequences for host-parasite interactions. Prior studies of the ecologically important parasite Metschnikowia bicuspidata have suggested low genetic variation in the species. Here, we collected M. bicuspidata from two host species (Daphnia dentifera and Ceriodaphnia dubia) and two regions (Michigan and Indiana, USA). Within a lake, outbreaks tended to occur in one host species but not the other. Using microsatellite markers, we identified six parasite genotypes grouped within three distinct clades, one of which was rare. Of the two main clades, one was generally associated with D. dentifera, with lakes in both regions containing a single genotype. The other M. bicuspidata clade was mainly associated with C. dubia, with a different genotype dominating in each region. Despite these associations, both D. dentifera- and C. dubia-associated genotypes were found infecting both hosts in lakes. However, in lab experiments, the D. dentifera-associated genotype infected both D. dentifera and C. dubia, but the C. dubia-associated genotype, which had spores that were approximately 30% smaller, did not infect D. dentifera. We hypothesize that variation in spore size might help explain patterns of cross-species transmission. Future studies exploring the causes and consequences of variation in spore size may help explain patterns of infection and the maintenance of genotypic diversity in this ecologically important system.more » « less
-
The underlying factors that lead to specific strains within a species to emerge as human pathogens remain mostly enigmatic. The diarrheal disease cholera is caused by strains from a phylogenetically confined group within theVibrio choleraespecies, the pandemic cholera group (PCG), making it an ideal model system to tackle this puzzling phenomenon. Comprehensive analyses of over 1,840V. choleraegenomes, including environmental isolates from this study, reveal that the species consists of eleven groups, with the PCG belonging to the largest and located within a lineage shared with environmental strains. This hierarchical classification provided us with a framework to unravel the ecoevolutionary dynamics of the genetic determinants associated with the emergence of toxigenicV. cholerae. Our analyses indicate that this phenomenon is largely dependent on the acquisition of unique modular gene clusters and allelic variations that confer a competitive advantage during intestinal colonization. We determined that certain PCG-associated alleles are essential for successful colonization whereas others provide a nonlinear competitive advantage, acting as a critical bottleneck that clarifies the isolated emergence of PCG. For instance, toxigenic strains encoding non-PCG alleles of a)tcpFor b) a sextuple allelic exchange mutant for genestcpA,toxT,VC0176,VC1791,rfbT,andompU, lose their ability to colonize the intestine. Interestingly, these alleles do not play a role in the colonization of newly established model environmental reservoirs. Our study uncovers the evolutionary roots of toxigenicV. choleraeoffering a tractable approach for investigating the emergence of pathogenic clones within an environmental population.more » « less
-
ABSTRACT Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and β-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb–O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland β-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb–O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb–O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.more » « less
-
Abstract The Andes are a major dispersal barrier for lowland rain forest plants and animals, yet hundreds of lowland tree species are distributed on both sides of the northern Andes, raising questions about how the Andes influenced their biogeographic histories and population genetic structure. To explore these questions, we generated standardized datasets of thousands of SNPs from paired populations of 49 tree species co‐distributed in rain forest tree communities located in Panama and Amazonian Ecuador and calculated genetic diversity (π) and absolute genetic divergence (dXY) within and between populations, respectively. We predicted (1) higher genetic diversity in the ancestral source region (east or west of the Andes) for each taxon and (2) correlation of genetic statistics with species attributes, including elevational range and life‐history strategy. We found that genetic diversity was higher in putative ancestral source regions, possibly reflecting founder events during colonization. We found little support for a relationship between genetic divergence and species attributes except that species with higher elevational range limits exhibited higherdXY, implying older divergence times. One possible explanation for this pattern is that dispersal through mountain passes declined in importance relative to dispersal via alternative lowland routes as the Andes experienced uplift. We found no difference in mean genetic diversity between populations in Central America and the Amazon. Overall, our results suggest that dispersal across the Andes has left enduring signatures in the genetic structure of widespread rain forest trees. We outline additional hypotheses to be tested with species‐specific case studies.more » « less
An official website of the United States government

