skip to main content

This content will become publicly available on December 1, 2023

Title: Dynamical phase-field model of coupled electronic and structural processes
Abstract Many functional and quantum materials derive their functionality from the responses of both their electronic and lattice subsystems to thermal, electric, and mechanical stimuli or light. Here we propose a dynamical phase-field model for predicting and modeling the dynamics of simultaneous electronic and structural processes and the accompanying mesoscale pattern evolution under static or ultrafast external stimuli. As an illustrative example of application, we study the transient dynamic response of ferroelectric domain walls excited by an ultrafast above-bandgap light pulse. We discover a two-stage relaxational electronic carrier evolution and a structural evolution containing multiple oscillational and relaxational components across picosecond to nanosecond timescales. The phase-field model offers a general theoretical framework which can be applied to a wide range of functional and quantum materials with interactive electronic and lattice orders and phase transitions to understand, predict, and manipulate their ultrafast dynamics and rich mesoscale evolution dynamics of domains, domain walls, and charges.
Authors:
;
Award ID(s):
1744213
Publication Date:
NSF-PAR ID:
10348255
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Sponsoring Org:
National Science Foundation
More Like this
  1. Extreme ultraviolet (XUV) light sources based on high harmonic generation are enabling the development of novel spectroscopic methods to help advance the frontiers of ultrafast science and technology. In this account we discuss the development of XUV-RA spectroscopy at near grazing incident reflection geometry and highlight recent applications of this method to study ultrafast electron dynamics at surfaces. Measuring core-to-valence transitions with broadband, femtosecond pulses of XUV light extends the benefits of x-ray absorption spectroscopy to a laboratory tabletop by providing a chemical fingerprint of materials, including the ability to resolve individual elements with sensitivity to oxidation state, spin state, carrier polarity, and coordination geometry. Combining this chemical state sensitivity with femtosecond time resolution provides new insight into the material properties that govern charge carrier dynamics in complex materials. It is well known that surface dynamics differ significantly from equivalent processes in bulk materials, and that charge separation, trapping, transport, and recombination occurring uniquely at surfaces governs the efficiency of numerous technologically relevant processes spanning photocatalysis, photovoltaics, and information storage and processing. Importantly, XUV-RA spectroscopy at near grazing angle is also surface sensitive with a probe depth of 3 nm, providing a new window into electronic and structural dynamics atmore »surfaces and interfaces. Here we highlight the unique capabilities and recent applications of XUVRA spectroscopy to study photo-induced surface dynamics in metal oxide semiconductors, including photocatalytic oxides (Fe2O3, Co3O4 NiO, and CuFeO2) as well as photoswitchable magnetic oxide (CoFe2O4). We first compare the ultrafast electron self-trapping rates via small polaron formation at the surface and bulk of Fe2O3 where we note that the energetics and kinetics of this process differ significantly at the surface. Additionally, we demonstrate the ability to systematically tune this kinetics by molecular functionalization, thereby, providing a route to control carrier transport at surfaces. We also measure the spectral signatures of charge transfer excitons with site specific localization of both electrons and holes in a series of transition metal oxide semiconductors (Fe2O3, NiO, Co3O4). The presence of valence band holes probed at the oxygen L1-edge confirms a direct relationship between the metal-oxygen bond covalency and water oxidation efficiency. For a mixed metal oxide CuFeO2 in the layered delafossite structure, XUV-RA reveals that the sub-picosecond hole thermalization from O 2p to Cu 3d states of CuFeO2 leads to the spatial separation of electrons and holes, resulting in exceptional photocatalytic performance for H2 evolution and CO2 reduction of this material. Finally, we provide an example to show the ability of XUV-RA to probe spin state specific dynamics in a the photo-switchable ferrimagnet, cobalt ferrite (CoFe2O4). This study provides a detailed understating of ultrafast spin switching in a complex magnetic material with site-specific resolution. In summary, the applications of XUV-RA spectroscopy demonstrated here illustrate the current abilities and future promise of this method to extend molecule-level understanding from well-defined photochemical complexes to complex materials so that charge and spin dynamics at surfaces can be tuned with the precision of molecular photochemistry.« less
  2. Abstract The interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets. Using time-resolved X-ray diffraction and optical linear dichroism measurements, interlayer shear is identified as the primary structural degree of freedom that couples with magnetic order. The recovery times of both shear and magnetic order upon optical excitation diverge at the magnetic ordering temperature with the same critical exponent. The time-dependent Ginzburg-Landau theory shows that this concurrent critical slowing down arises from a linear coupling of the interlayer shear to the magnetic order, which is dictated by the broken mirror symmetry intrinsic to the monoclinic stacking. Our results highlight the importance of interlayer shear in ultrafast control of magnetic order via spin-mechanical coupling.
  3. Abstract

    The discovery of two-dimensional systems hosting intrinsic magnetic order represents a seminal addition to the rich landscape of van der Waals materials. CrI3is an archetypal example, where the interdependence of structure and magnetism, along with strong light-matter interactions, provides a new platform to explore the optical control of magnetic and vibrational degrees of freedom at the nanoscale. However, the nature of magneto-structural coupling on its intrinsic ultrafast timescale remains a crucial open question. Here, we probe magnetic and vibrational dynamics in bulk CrI3using ultrafast optical spectroscopy, revealing spin-flip scattering-driven demagnetization and strong transient exchange-mediated interactions between lattice vibrations and spin oscillations. The latter yields a coherent spin-coupled phonon mode that is highly sensitive to the driving pulse’s helicity in the magnetically ordered phase. Our results elucidate the nature of ultrafast spin-lattice coupling in CrI3and highlight its potential for applications requiring high-speed control of magnetism at the nanoscale.

  4. Abstract Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enablemore »quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future.« less
  5. Domain walls, commonly occurring at the interface of different phases in solid-state materials, have recently been harnessed at the structural scale to enable additional modes of functionality. Here, we combine experimental, numerical, and theoretical tools to investigate the domain walls emerging upon uniaxial compression in a mechanical metamaterial based on the rotating-squares mechanism. We first show that these interfaces can be generated and controlled by carefully arranging a few phase-inducing defects. We establish an analytical model to capture the evolution of the domain walls as a function of the applied deformation. We then employ this model as a guideline to realize interfaces of complex shape. Finally, we show that the engineered domain walls modify the global response of the metamaterial and can be effectively exploited to tune its stiffness as well as to guide the propagation of elastic waves.