skip to main content

Search for: All records

Award ID contains: 1744213

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many functional and quantum materials derive their functionality from the responses of both their electronic and lattice subsystems to thermal, electric, and mechanical stimuli or light. Here we propose a dynamical phase-field model for predicting and modeling the dynamics of simultaneous electronic and structural processes and the accompanying mesoscale pattern evolution under static or ultrafast external stimuli. As an illustrative example of application, we study the transient dynamic response of ferroelectric domain walls excited by an ultrafast above-bandgap light pulse. We discover a two-stage relaxational electronic carrier evolution and a structural evolution containing multiple oscillational and relaxational components across picosecond to nanosecond timescales. The phase-field model offers a general theoretical framework which can be applied to a wide range of functional and quantum materials with interactive electronic and lattice orders and phase transitions to understand, predict, and manipulate their ultrafast dynamics and rich mesoscale evolution dynamics of domains, domain walls, and charges.
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available September 1, 2023
  3. Free, publicly-accessible full text available August 1, 2023
  4. Free, publicly-accessible full text available June 1, 2023
  5. High-temperature poling eliminates light-scattering domain walls in a relaxor ferroelectric.
    Free, publicly-accessible full text available April 22, 2023
  6. Abstract Ferroelectric topological objects provide a fertile ground for exploring emerging physical properties that could potentially be utilized in future nanoelectronic devices. Here, we demonstrate quasi-one-dimensional metallic high conduction channels associated with the topological cores of quadrant vortex domain and center domain (monopole-like) states confined in high quality BiFeO 3 nanoislands, abbreviated as the vortex core and the center core. We unveil via the phase-field simulation that the superfine metallic conduction channels along the center cores arise from the screening charge carriers confined at the core region, whereas the high conductance of vortex cores results from a field-induced twisted state. These conducting channels can be reversibly created and deleted by manipulating the two topological states via electric field, leading to an apparent electroresistance effect with an on/off ratio higher than 10 3 . These results open up the possibility of utilizing these functional one-dimensional topological objects in high-density nanoelectronic devices, e.g. nonvolatile memory.