skip to main content


Title: New Insights into the South American Low-Level Jet from RELAMPAGO Observations
Abstract The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) campaign produced unparalleled observations of the South American low-level jet (SALLJ) in central Argentina with high temporal observations located in the path of the jet and upstream of rapidly growing convection. The vertical and temporal structure of the jet is characterized using 3-hourly soundings launched at two fixed sites near the Sierras de Córdoba (SDC), along with high-resolution reanalysis data. Objective SALLJ identification criteria are applied to each sounding to determine the presence, timing, and vertical characteristics of the jet. The observations largely confirm prior results showing that SALLJs most frequently come from the north, occur overnight, and peak in the low levels, though SALLJs notably peaked higher near the end of longer-duration events during RELAMPAGO. This study categorizes SALLJs into shorter-duration events with jet cores peaking overnight in the low levels and longer 5–6-day events with elevated jets near the end of the period that lack a clear diurnal cycle. Evidence of both boundary layer processes and large-scale forcing were observed during shorter-duration events, whereas synoptic forcing dominated the longer 5–6-day events. The highest amounts of moisture and larger convective coverage east of the SDC occurred near the end of the 5–6-day SALLJ events. Significance Statement The South American low-level jet (SALLJ) is an area of enhanced northerly winds that likely contributes to long-lived, widespread thunderstorms in Southeastern South America (SESA). This study uses observations from a recent SESA field project to improve understanding of the variability of the SALLJ and the underlying processes. We related jet occurrence to upper-level environmental patterns and differences in the progression speed of those patterns to varying durations of the jet. Longer-duration jets were more elevated, transported moisture southward from the Amazon, and coincided with the most widespread storms. These findings enable future research to study the role of the SALLJ in the life cycle of storms in detail, leading to improved storm prediction in SESA.  more » « less
Award ID(s):
1661768 1661657
NSF-PAR ID:
10348292
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Weather Review
Volume:
150
Issue:
6
ISSN:
0027-0644
Page Range / eLocation ID:
1247 to 1271
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study documents the spatial and temporal distribution of the South American low-level jet (SALLJ) and quantifies its impact on the convective environment using a 6.5-month convection-permitting simulation during the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) campaigns. Overall, the simulation reproduces the observed SALLJ characteristics in central Argentina near the Sierras de Córdoba (SDC), a focal point for terrain-focused upscale growth. SALLJs most frequently occur in the summer with maxima to the northwest and east of the SDC and minima over the higher terrain. The shallower SALLJs (<1750 m) have a strong overnight skew, while the elevated jets are more equally spread throughout the day. SALLJ periods often have higher amounts of low-level moisture and instability compared to non-SALLJ periods, with these impacts increasing over time when the SALLJ is present and decreasing afterward. The SALLJ may enhance low-level wind shear magnitudes (particularly when accounting for the jet height); however, enhancement is somewhat limited due to the presence of speed shear in most situations. SALLJ periods are associated with low-level directional shear favorable for organized convection and an orientation of cloud-layer wind shear parallel to the terrain, which could favor upscale growth. A case study is shown in which the SALLJ influenced both the magnitude and direction of wind shear concurrent with convective upscale growth near the SDC. This study highlights the complex relationship between the SALLJ and its impacts during periods of widespread convection.

    Significance Statement

    Areas of enhanced low-level winds, or low-level jets, likely promote favorable conditions for upscale growth, the processes by which storms grow larger. Central Argentina is an ideal place to study the influence of low-level jets on upscale growth as storms often stay connected to the Sierras de Córdoba Mountain range, growing over a relatively small area. This study uses model data to describe the distribution and impact of the South American low-level jet on the storm environment. The South American low-level jet is frequently found near the Sierras de Córdoba, and moisture and convective instability increase when it is present. However, the jet’s impact on other conditions important for upscale growth, such as vertical wind shear, is not as straightforward.

     
    more » « less
  2. Abstract

    A multiscale analysis of the environment supporting tornadoes in southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American low-level jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden–Julian oscillation phase 3 preferentially occurs 1–2 weeks ahead of tornado occurrence.

    Significance Statement

    The main goal of this study is to describe what atmospheric conditions (from local to global scales) are present prior to and during tornadic storms impacting southeast South America (SESA). Increasing potential for deep convection, wind shear, and potential for rotating updrafts, as well as reducing convective inhibition and cloud-base height, are predominant a few hours before and during the events in connection to low-level northerly winds enhancing moisture transport to the region. Remote convective activity near northern Australia appears to influence large-scale atmospheric circulation that subsequently triggers convective storms supporting tornadogenesis 1–2 weeks later in SESA. Our findings highlight the importance of accounting for atmospheric processes occurring at different scales to understand and predict tornado occurrences.

     
    more » « less
  3. null (Ed.)
    Abstract During the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations-Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO-CACTI) field experiments in 2018–19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018–30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evolution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. A total of 11 soundings showed most unstable convective available potential energy (MUCAPE) exceeding 6000 J kg −1 , comparable to the extreme instability observed in other parts of the world with intense deep convection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily because of insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively generated cold pools, the South American low-level jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible. 
    more » « less
  4. null (Ed.)
    ABSTRACT: During the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations-Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO-CACTI) field ex- periments in 2018–19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018–30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evo- lution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. A total of 11 soundings showed most unstable convective available potential energy (MUCAPE) ex- ceeding 6000 J kg21, comparable to the extreme instability observed in other parts of the world with intense deep con- vection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily because of insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively gen- erated cold pools, the South American low-level jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible. 
    more » « less
  5. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less