skip to main content


Title: Filamentation of fast radio bursts in magnetar winds
ABSTRACT

Magnetars are the most promising progenitors of fast radio bursts (FRBs). Strong radio waves propagating through the magnetar wind are subject to non-linear effects, including modulation/filamentation instabilities. We derive the dispersion relation for modulations of strong waves propagating in magnetically dominated pair plasmas focusing on dimensionless strength parameters a0 ≲ 1, and discuss implications for FRBs. As an effect of the instability, the FRB-radiation intensity develops sheets perpendicular to the direction of the wind magnetic field. When the FRB front expands outside the radius where the instability ends, the radiation sheets are scattered due to diffraction. The FRB-scattering time-scale depends on the properties of the magnetar wind. In a cold wind, the typical scattering time-scale is τsc ∼  $\mu$s–ms at the frequency $\nu \sim 1\, {\rm GHz}$. The scattering time-scale increases at low frequencies, with the scaling τsc ∝ ν−2. The frequency-dependent broadening of the brightest pulse of FRB 181112 is consistent with this scaling. From the scattering time-scale of the pulse, one can estimate that the wind Lorentz factor is larger than a few tens. In a warm wind, the scattering time-scale can approach $\tau _{\rm sc}\sim \, {\rm ns}$. Then scattering produces a frequency modulation of the observed intensity with a large bandwidth, $\Delta \nu \sim 1/\tau _{\rm sc}\gtrsim 100\, {\rm MHz}$. Broad-band frequency modulations observed in FRBs could be due to scattering in a warm magnetar wind.

 
more » « less
Award ID(s):
2009453
NSF-PAR ID:
10363614
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4766-4773
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nonlinear effects are crucial for the propagation of fast radio bursts (FRBs) near the source. We study the filamentation of FRBs in the relativistic winds of magnetars, which are commonly invoked as the most natural FRB progenitors. As a result of filamentation, the particle number density and radiation intensity develop strong gradients along the direction of the wind magnetic field. A steady state is reached when the plasma pressure balances the ponderomotive force. In such a steady state, particles are confined in periodically spaced thin sheets, and electromagnetic waves propagate between them as in a waveguide. We show the following. (i) The dispersion relation resembles that in the initial homogeneous plasma, but the effective plasma frequency is determined by the separation of the sheets, not directly by the mean particle density. (ii) The contribution of relativistic magnetar winds to the dispersion measure of FRBs could be several orders of magnitude larger than previously thought. The dispersion measure of the wind depends on the properties of individual bursts (e.g., the luminosity) and therefore can change significantly among different bursts from repeating FRBs. (iii) Induced Compton scattering is suppressed because most of the radiation propagates in near-vacuum regions.

     
    more » « less
  2. null (Ed.)
    ABSTRACT A few fast radio bursts’ (FRBs) light curves have exhibited large intrinsic modulations of their flux on extremely short ($t_{\rm r}\sim 10\, \mu$s) time-scales, compared to pulse durations (tFRB ∼ 1 ms). Light-curve variability time-scales, the small ratio of rise time of the flux to pulse duration, and the spectro-temporal correlations in the data constrain the compactness of the source and the mechanism responsible for the powerful radio emission. The constraints are strongest when radiation is produced far (≳1010 cm) from the compact object. We describe different physical set-ups that can account for the observed tr/tFRB ≪ 1 despite having large emission radii. The result is either a significant reduction in the radio production efficiency or distinct light-curve features that could be searched for in observed data. For the same class of models, we also show that due to high-latitude emission, if a flux f1(ν1) is observed at t1 then at a lower frequency ν2 < ν1 the flux should be at least (ν2/ν1)2f1 at a slightly later time (t2 = t1ν1/ν2) independent of the duration and spectrum of the emission in the comoving frame. These features can be tested, once light-curve modulations due to scintillation are accounted for. We provide the time-scales and coherence bandwidths of the latter for a range of possibilities regarding the physical screens and the scintillation regime. Finally, if future highly resolved FRB light curves are shown to have intrinsic variability extending down to ${\sim}\mu$s time-scales, this will provide strong evidence in favour of magnetospheric models. 
    more » « less
  3. Abstract

    One scenario for the generation of fast radio bursts (FRBs) is magnetic reconnection in a current sheet of the magnetar wind. Compressed by a strong magnetic pulse induced by a magnetar flare, the current sheet fragments into a self-similar chain of magnetic islands. Time-dependent plasma currents at their interfaces produce coherent radiation during their hierarchical coalescence. We investigate this scenario using 2D radiative relativistic particle-in-cell simulations to compute the efficiency of the coherent emission and to obtain frequency scalings. Consistent with expectations, a fraction of the reconnected magnetic field energy,f∼ 0.002, is converted to packets of high-frequency fast magnetosonic waves, which can escape from the magnetar wind as radio emission. In agreement with analytical estimates, we find that magnetic pulses of 1047erg s−1can trigger relatively narrowband GHz emission with luminosities of approximately 1042erg s−1, sufficient to explain bright extragalactic FRBs. The mechanism provides a natural explanation for a downward frequency drift of burst signals, as well as the ∼100 ns substructure recently detected inFRB 20200120E.

     
    more » « less
  4. ABSTRACT

    At least some fast radio bursts (FRBs) are produced by magnetars. Even though mounting observational evidence points towards a magnetospheric origin of FRB emission, the question of the location for FRB generation continues to be debated. One argument suggested against the magnetospheric origin of bright FRBs is that the radio waves associated with an FRB may lose most of their energy before escaping the magnetosphere because the cross-section for e± to scatter large-amplitude electromagnetic waves in the presence of a strong magnetic field is much larger than the Thompson cross-section. We have investigated this suggestion and find that FRB radiation travelling through the open field line region of a magnetar’s magnetosphere does not suffer much loss due to two previously ignored factors. First, the plasma in the outer magnetosphere ($r \gtrsim 10^9$ cm), where the losses are potentially most severe, is likely to be flowing outwards at a high Lorentz factor γp ≥ 103. Secondly, the angle between the wave vector and the magnetic field vector, θB, in the outer magnetosphere is likely of the order of 0.1 radian or smaller due in part to the intense FRB pulse that tilts open magnetic field lines so that they get aligned with the pulse propagation direction. Both these effects reduce the interaction between the FRB pulse and the plasma substantially. We find that a bright FRB with an isotropic luminosity $L_{\rm frb} \gtrsim 10^{42} \, {\rm erg \ s^{-1}}$ can escape the magnetosphere unscathed for a large section of the γp − θB parameter space, and therefore conclude that the generation of FRBs in magnetar magnetosphere passes this test.

     
    more » « less
  5. ABSTRACT

    Most fast radio burst (FRB) models can be divided into two groups based on the distance of the radio emission region from the central engine. The first group of models, the so-called ‘nearby’ or magnetospheric models, invoke FRB emission at distances of 109 cm or less from the central engine, while the second ‘far-away’ models involve emission from distances of 1011 cm or greater. The lateral size for the emission region for the former class of models (≲107 cm) is much smaller than the second class of models (≳109 cm). We propose that an interstellar scattering screen in the host galaxy is well-suited to differentiate between the two classes of models, particularly based on the level of modulations in the observed intensity with frequency, in the regime of strong diffractive scintillation. This is because the diffractive length scale for the host galaxy’s interstellar medium scattering screen is expected to lie between the transverse emission-region sizes for the ‘nearby’ and the ‘far-away’ class of models. Determining the strength of flux modulation caused by scintillation (scintillation modulation index) across the scintillation bandwidth (∼1/2πδts) would provide a strong constraint on the FRB radiation mechanism when the scatter broadening (δts) is shown to be from the FRB host galaxy. The scaling of the scintillation bandwidth as ∼ν4.4 may make it easier to determine the modulation index at ≳ 1 GHz.

     
    more » « less