skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast Diffusion leads to partial mass concentration in Keller–Segel type stationary solutions
We show that partial mass concentration can happen for stationary solutions of aggregation–diffusion equations with homogeneous attractive kernels in the fast diffusion range. More precisely, we prove that the free energy admits a radial global minimizer in the set of probability measures which may have part of its mass concentrated in a Dirac delta at a given point. In the case of the quartic interaction potential, we find the exact range of the diffusion exponent where concentration occurs in space dimensions [Formula: see text]. We then provide numerical computations which suggest the occurrence of mass concentration in all dimensions [Formula: see text], for homogeneous interaction potentials with higher power.  more » « less
Award ID(s):
1954995
PAR ID:
10348429
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Mathematical Models and Methods in Applied Sciences
Volume:
32
Issue:
04
ISSN:
0218-2025
Page Range / eLocation ID:
831 to 850
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We prove the Marchenko–Pastur law for the eigenvalues of [Formula: see text] sample covariance matrices in two new situations where the data does not have independent coordinates. In the first scenario — the block-independent model — the [Formula: see text] coordinates of the data are partitioned into blocks in such a way that the entries in different blocks are independent, but the entries from the same block may be dependent. In the second scenario — the random tensor model — the data is the homogeneous random tensor of order [Formula: see text], i.e. the coordinates of the data are all [Formula: see text] different products of [Formula: see text] variables chosen from a set of [Formula: see text] independent random variables. We show that Marchenko–Pastur law holds for the block-independent model as long as the size of the largest block is [Formula: see text], and for the random tensor model as long as [Formula: see text]. Our main technical tools are new concentration inequalities for quadratic forms in random variables with block-independent coordinates, and for random tensors. 
    more » « less
  2. null (Ed.)
    In this paper, we study the parameter estimation of interacting particle systems subject to the Newtonian aggregation and Brownian diffusion. Specifically, we construct an estimator [Formula: see text] with partial observed data to approximate the diffusion parameter [Formula: see text], and the estimation error is achieved. Furthermore, we extend this result to general aggregation equations with a bounded Lipschitz interaction field. 
    more » « less
  3. The Littlewood–Paley decomposition for functions defined on the whole space [Formula: see text] and related Besov space techniques have become indispensable tools in the study of many partial differential equations (PDEs) with [Formula: see text] as the spatial domain. This paper intends to develop parallel tools for the periodic domain [Formula: see text]. Taking advantage of the boundedness and convergence theory on the square-cutoff Fourier partial sum, we define the Littlewood–Paley decomposition for periodic functions via the square cutoff. We remark that the Littlewood–Paley projections defined via the circular cutoff in [Formula: see text] with [Formula: see text] in the literature do not behave well on the Lebesgue space [Formula: see text] except for [Formula: see text]. We develop a complete set of tools associated with this decomposition, which would be very useful in the study of PDEs defined on [Formula: see text]. As an application of the tools developed here, we study the periodic weak solutions of the [Formula: see text]-dimensional Boussinesq equations with the fractional dissipation [Formula: see text] and without thermal diffusion. We obtain two main results. The first assesses the global existence of [Formula: see text]-weak solutions for any [Formula: see text] and the existence and uniqueness of the [Formula: see text]-weak solutions when [Formula: see text] for [Formula: see text]. The second establishes the zero thermal diffusion limit with an explicit convergence rate. 
    more » « less
  4. Let [Formula: see text] be a residually finite dimensional algebra (not necessarily associative) over a field [Formula: see text]. Suppose first that [Formula: see text] is algebraically closed. We show that if [Formula: see text] satisfies a homogeneous almost identity [Formula: see text], then [Formula: see text] has an ideal of finite codimension satisfying the identity [Formula: see text]. Using well known results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra [Formula: see text] over [Formula: see text] is almost [Formula: see text]-Engel, then [Formula: see text] has a nilpotent (respectively, locally nilpotent) ideal of finite codimension if char [Formula: see text] (respectively, char [Formula: see text]). Next, suppose that [Formula: see text] is finite (so [Formula: see text] is residually finite). We prove that, if [Formula: see text] satisfies a homogeneous probabilistic identity [Formula: see text], then [Formula: see text] is a coset identity of [Formula: see text]. Moreover, if [Formula: see text] is multilinear, then [Formula: see text] is an identity of some finite index ideal of [Formula: see text]. Along the way we show that if [Formula: see text] has degree [Formula: see text], and [Formula: see text] is a finite [Formula: see text]-algebra such that the probability that [Formula: see text] (where [Formula: see text] are randomly chosen) is at least [Formula: see text], then [Formula: see text] is an identity of [Formula: see text]. This solves a ring-theoretic analogue of a (still open) group-theoretic problem posed by Dixon, 
    more » « less
  5. This paper is a sequel to [Monatsh. Math. 194 (2021) 523–554] in which results of that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approximation. Given any integers [Formula: see text] and [Formula: see text], any [Formula: see text], and any homogeneous function [Formula: see text] that satisfies a certain nonsingularity assumption, we obtain a biconditional criterion on the approximating function [Formula: see text] for a generic element [Formula: see text] in the [Formula: see text]-orbit of [Formula: see text] to be (respectively, not to be) [Formula: see text]-approximable at [Formula: see text]: that is, for there to exist infinitely many (respectively, only finitely many) [Formula: see text] such that [Formula: see text] for each [Formula: see text]. In this setting, we also obtain a sufficient condition for uniform approximation. We also consider some examples of [Formula: see text] that do not satisfy our nonsingularity assumptions and prove similar results for these examples. Moreover, one can replace [Formula: see text] above by any closed subgroup of [Formula: see text] that satisfies certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the aforementioned previous paper. 
    more » « less