skip to main content

Title: The effect of food insecurity during college on graduation and type of degree attained: evidence from a nationally representative longitudinal survey
Abstract Objective: To examine the effect of food insecurity during college on graduation and degree attainment. Design: Secondary analysis of longitudinal panel data. We measured food insecurity concurrent with college enrollment using the 18-question USDA Household Food Security Survey Module. Educational attainment was measured in 2015-2017 via two questions about college completion and highest degree attained. Logistic and multinomial-logit models adjusted for sociodemographic characteristics were estimated. Setting: United States (US) Participants: A nationally representative, balanced panel of 1,574 college students in the US in 1999-2003 with follow-up through 2015-2017 from the Panel Study of Income Dynamics. Results: In 1999-2003, 14.5% of college students were food insecure and were more likely to be older, non-White, and first-generation students. In adjusted models, food insecurity was associated with lower odds of college graduation (OR 0.57, 95% CI: 0.37, 0.88, p=0.01) and lower likelihood of obtaining a Bachelor’s degree (RRR 0.57 95% CI: 0.35, 0.92, p=0.02) or graduate/professional degree (RRR 0.39, 95% CI: 0.17, 0.86, p=0.022). These associations were more pronounced among first-generation students. 47.2% of first-generation students who experienced food insecurity graduated from college; food insecure first-generation students were less likely to graduate compared to first-generation students who were food secure (47.2% vs. more » 59.3%, p=0.020) and non-first-generation students who were food insecure (47.2% vs. 65.2%, p=0.037). Conclusions: Food insecurity during college is a barrier to graduation and higher degree attainment, particularly for first-generation students. Existing policies and programs that help mitigate food insecurity should be expanded and more accessible to the college student population. « less
Authors:
; ; ;
Award ID(s):
2042875
Publication Date:
NSF-PAR ID:
10348449
Journal Name:
Public Health Nutrition
Volume:
25
Issue:
2
Page Range or eLocation-ID:
1 to 22
ISSN:
1368-9800
Sponsoring Org:
National Science Foundation
More Like this
  1. First-generation (FG) and/or low-income (LI) engineering student populations are of particular interest in engineering education. However, these populations are not defined in a consistent manner across the literature or amongst stakeholders. The intersectional identities of these groups have also not been fully explored in most quantitative-based engineering education research. This research paper aims to answer the following three research questions: (RQ1) How do students’ demographic characteristics and college experiences differ depending on levels of parent educational attainment (which forms the basis of first-generation definitions) and family income? (RQ2) How do ‘first-generation’ and ‘low-income’ definitions impact results comparing to their continuing-generation and higher-income peers? (RQ3) How does considering first-generation and low-income identities through an intersectional lens deepen insight into the experiences of first-generation and low-income groups? Data were drawn from a nationally representative survey of engineering juniors and seniors (n = 6197 from 27 U.S. institutions). Statistical analyses were conducted to evaluate respondent differences in demographics (underrepresented racial/ethnic minority (URM), women, URM women), college experiences (internships/co-ops, having a job, conducting research, and study abroad), and engineering task self-efficacy (ETSE), based on various definitions of ‘first generation’ and ‘low income’ depending on levels of parental educational attainment and self-reported family income. Ourmore »results indicate that categorizing a first-generation student as someone whose parents have less than an associate’s degree versus less than a bachelor’s degree may lead to different understandings of their experiences (RQ1). For example, the proportion of URM students is higher among those whose parents have less than an associate’s degree than among their “associate’s degree or more” peers (26% vs 11.9%). However, differences in college experiences are most pronounced among students whose parents have less than a bachelor’s degree compared with their “bachelor’s degree or more” peers: having a job to help pay for college (55.4% vs 47.3%), research with faculty (22.7% vs 35.0%), and study abroad (9.0% vs 17.3%). With respect to differences by income levels, respondents are statistically different across income groups, with fewer URM students as family income level increases. As family income level increases, there are more women in aggregate, but fewer URM women. College experiences are different for the middle income or higher group (internship 48.4% low and lower-middle income vs 59.0% middle income or higher; study abroad 11.2% vs 16.4%; job 58.6% vs 46.8%). Despite these differences in demographic characteristics and college experiences depending on parental educational attainment and family income, our dataset indicates that the definition does not change the statistical significance when comparing between first-generation students and students who were continuing-generation by any definition (RQ2). First-generation and low-income statuses are often used as proxies for one another, and in this dataset, are highly correlated. However, there are unique patterns at the intersection of these two identities. For the purpose of our RQ3 analysis, we define ‘first-generation’ as students whose parents earned less than a bachelor’s degree and ‘low-income’ as low or lower-middle income. In this sample, 68 percent of students were neither FG nor LI while 11 percent were both (FG&LI). On no measure of demographics or college experience is the FG&LI group statistically similar to the advantaged group. Low-income students had the highest participation in working to pay for college, regardless of parental education, while first-generation students had the lower internship participation than low-income students. Furthermore, being FG&LI is associated with lower ETSE compared with all other groups. These results suggest that care is required when applying the labels “first-generation” and/or “low-income” when considering these groups in developing institutional support programs, in engineering education research, and in educational policy. Moreover, by considering first-generation and low-income students with an intersectional lens, we gain deeper insight into engineering student populations that may reveal potential opportunities and barriers to educational resources and experiences that are an important part of preparation for an engineering career.« less
  2. More women than men in the US graduate college, but women constitute only 16% of the engineering workforce [1]. Women frequently attribute their lack of persistence in engineering to a chilly academic climate [2]. Researchers have suggested that developing a robust engineering identity could moderate a climate effect and support improved retention and graduation of female engineers [2]. However, there is little empirical data on interrelationships among gender, perceived academic climate in engineering programs, engineering identity, and belonging to an engineering community. We drew on social identity theory and extant literature to develop four research questions: 1) Are there any differences between men and women regarding perceived academic climate, sense of belonging, and engineering identity? 2) Does academic climate predict engineering identity in the same way for women and men? 3)Does sense of belonging mediate the relationship between perceived academic climate and engineering identity? 4) Do engineering students who are women demonstrate different relationships among perceived climate, engineering identity, and belongingness from men? We used survey data from a multi-year NSF-funded project (Award # 1726268, #1726088, and #1725880/2033129) that incorporated experimental course-based interventions to build an inclusive curriculum. Surveys were administered at the beginning and end of the semester. Wemore »found that at the end of the semester women engineering undergraduates reported lower engineering identity though the initial engineering identity, perceived academic climate, and sense of belonging were the same for both men and women engineering undergraduates. Multiple regression analyses with 601 first-year engineer majors (21% female) indicated perceived climate and gender accounted for 48% of engineering identity variability. The interaction between perceived climate and gender on engineering identity was not statistically significant. Mediation analysis revealed that sense of belonging (b=0.42, 95% CI [0.30, 0.53]) mediated the relationship between perceived climate and engineering identity for both males and females. Sense of belonging was critical in engineering identity. Moderated mediation analysis indicated gender did not moderate the indirect effect of perceived climate on engineering identity through a sense of belonging.« less
  3. In 2003, Chicago Public Schools introduced double-dose algebra, requiring two periods of math—one period of algebra and one of algebra support—for incoming ninth graders with eighth-grade math scores below the national median. Using a regression discontinuity design, earlier studies showed promising results from the program: For median-skill students, double-dose algebra improved algebra test scores, pass rates, high school graduation rates, and college enrollment. This study follows the same students 12 y later. Our findings show that, for median-skill students in the 2003 cohort, double-dose significantly increased semesters of college attended and college degree attainment. These results were not replicated for the 2004 cohort. Importantly, the impact of the policy on median-skill students depended largely on how classes were organized. In 2003, the impacts on college persistence and degree attainment were large in schools that strongly adhered to the cut-score-based course assignment, but without grouping median-skill students with lower-skill peers. Few schools implemented the policy in such a way in 2004.
  4. Abstract Study Objective We investigated sleep disparities and academic achievement in college. Methods Participants were 6,002 first-year college students attending a midsize private university in the southern United States [62.0% female, 18.8% first-generation, 37.4% Black, Indigenous, or People of Color (BIPOC) students]. During the first 3–5 weeks of college, students reported their typical weekday sleep duration, which we classified as short sleep (<7 hours), normal sleep (7–9 hours), or long sleep (>9 hours). Results The odds for short sleep were significantly greater in BIPOC students (95% CI: 1.34–1.66) and female students (95% CI: 1.09–1.35), and the odds for long sleep were greater in BIPOC students (95% CI: 1.38–3.08) and first-generation students (95% CI: 1.04–2.53). In adjusted models, financial burden, employment, stress, STEM academic major, student athlete status, and younger age explained unique variance in sleep duration, fully mediating disparities for females and first-generation students (but only partially mediating disparities for BIPOC students). Short and long sleep predicted worse GPA across students’ first year in college, even after controlling for high school academic index, demographics, and psychosocial variables. Conclusions Higher education should address sleep health early in college to help remove barriers to success and reduce disparities.
  5. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family tomore »attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees.« less