In this study, photocatalytic properties and in vitro cytotoxicity of 29 TiO 2 -based multi-component nanomaterials ( i.e. , hybrids of more than two composition types of nanoparticles) were evaluated using a combination of the experimental testing and supervised machine learning modeling. TiO 2 -based multi-component nanomaterials with metal clusters of silver, and their mixtures with gold, palladium, and platinum were successfully synthesized. Two activities, photocatalytic activity and cytotoxicity, were studied. A novel cheminformatic approach was developed and applied for the computational representation of the photocatalytic activity and cytotoxicity effect. In this approach, features of investigated TiO 2 -based hybrid nanomaterials were reflected by a series of novel additive descriptors for hybrid and hybrid nanostructures (denoted as “hybrid nanosctructure descriptors”). These descriptors are based on quantum chemical calculations and the Smoluchowski equation. The obtained experimental data and calculated hybrid-nanostructure descriptors were used to develop novel predictive Quantitative Structure–Activity Relationship computational models (called “nano-QSAR mix ”). The proposed modeling approach is an initial step in the understanding of the relationships between physicochemical properties of hybrid nanoparticles, their toxicity, and photochemical activity under UV-vis irradiation. Acquired knowledge supports the safe-by-design approaches relevant to the development of efficient hybrid nanomaterials with reduced hazardous effects.
more »
« less
VLA-SMILES: Variable-Length-Array SMILES Descriptors in Neural Network-Based QSAR Modeling
Machine learning represents a milestone in data-driven research, including material informatics, robotics, and computer-aided drug discovery. With the continuously growing virtual and synthetically available chemical space, efficient and robust quantitative structure–activity relationship (QSAR) methods are required to uncover molecules with desired properties. Herein, we propose variable-length-array SMILES-based (VLA-SMILES) structural descriptors that expand conventional SMILES descriptors widely used in machine learning. This structural representation extends the family of numerically coded SMILES, particularly binary SMILES, to expedite the discovery of new deep learning QSAR models with high predictive ability. VLA-SMILES descriptors were shown to speed up the training of QSAR models based on multilayer perceptron (MLP) with optimized backpropagation (ATransformedBP), resilient propagation (iRPROP‒), and Adam optimization learning algorithms featuring rational train–test splitting, while improving the predictive ability toward the more compute-intensive binary SMILES representation format. All the tested MLPs under the same length-array-based SMILES descriptors showed similar predictive ability and convergence rate of training in combination with the considered learning procedures. Validation with the Kennard–Stone train–test splitting based on the structural descriptor similarity metrics was found more effective than the partitioning with the ranking by activity based on biological activity values metrics for the entire set of VLA-SMILES featured QSAR. Robustness and the predictive ability of MLP models based on VLA-SMILES were assessed via the method of QSAR parametric model validation. In addition, the method of the statistical H0 hypothesis testing of the linear regression between real and observed activities based on the F2,n−2 -criteria was used for predictability estimation among VLA-SMILES featured QSAR-MLPs (with n being the volume of the testing set). Both approaches of QSAR parametric model validation and statistical hypothesis testing were found to correlate when used for the quantitative evaluation of predictabilities of the designed QSAR models with VLA-SMILES descriptors.
more »
« less
- Award ID(s):
- 2118061
- PAR ID:
- 10348471
- Date Published:
- Journal Name:
- Machine Learning and Knowledge Extraction
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2504-4990
- Page Range / eLocation ID:
- 715 to 737
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present PyXtal_FF—a package based on Python programming language—for developing machine learning potentials (MLPs). The aim of PyXtal_FF is to promote the application of atomistic simulations through providing several choices of atom-centered descriptors and machine learning regressions in one platform. Based on the given choice of descriptors (including the atom-centered symmetry functions, embedded atom density, SO4 bispectrum, and smooth SO3 power spectrum), PyXtal_FF can train MLPs with either generalized linear regression or neural network models, by simultaneously minimizing the errors of energy/forces/stress tensors in comparison with the data fromab-initiosimulations. The trained MLP model from PyXtal_FF is interfaced with the Atomic Simulation Environment (ASE) package, which allows different types of light-weight simulations such as geometry optimization, molecular dynamics simulation, and physical properties prediction. Finally, we will illustrate the performance of PyXtal_FF by applying it to investigate several material systems, including the bulk SiO2, high entropy alloy NbMoTaW, and elemental Pt for general purposes. Full documentation of PyXtal_FF is available athttps://pyxtal-ff.readthedocs.io.more » « less
-
Abstract Quantitative structure-activity relationship (QSAR) modeling is a powerful tool for drug discovery, yet the lack of interpretability of commonly used QSAR models hinders their application in molecular design. We propose a similarity-based regression framework, topological regression (TR), that offers a statistically grounded, computationally fast, and interpretable technique to predict drug responses. We compare the predictive performance of TR on 530 ChEMBL human target activity datasets against the predictive performance of deep-learning-based QSAR models. Our results suggest that our sparse TR model can achieve equal, if not better, performance than the deep learning-based QSAR models and provide better intuitive interpretation by extracting an approximate isometry between the chemical space of the drugs and their activity space.more » « less
-
null (Ed.)Using machine learning (ML) to develop quantitative structure—activity relationship (QSAR) models for contaminant reactivity has emerged as a promising approach because it can effectively handle non-linear relationships. However, ML is often data-demanding, whereas data scarcity is common in QSAR model development. Here, we proposed two approaches to address this issue: combining small datasets and transferring knowledge between them. First, we compiled four individual datasets for four oxidants, i.e., SO4•-, HClO, O3 and ClO2, each dataset containing a different number of contaminants with their corresponding rate constants and reaction conditions (pH and/or temperature). We then used molecular fingerprints (MF) or molecular descriptors (MD) to represent the contaminants; combined them with ML algorithms to develop individual QSAR models for these four datasets; and interpreted the models by the Shapley Additive exPlantion (SHAP) method. The results showed that both the optimal contaminant representation and the best ML algorithm are dataset dependent. Next, we merged these four datasets and developed a unified model, which showed better predictive performance on the datasets of HClO, O3 and ClO2 because the model ‘corrected’ some wrongly learned effects of several atom groups. We further developed knowledge transfer models based on the second approach, the effectiveness of which depends on if there is consistent knowledge shared between the two datasets as well as the predictive performance of the respective single models. This study demonstrated the benefit of combining small similar datasets and transferring knowledge between them, which can be leveraged to boost the predictive performance of ML-assisted QSAR models.more » « less
-
Abstract Quantitative structure–activity relationship (QSAR) modeling has become a critical tool in drug design. Recently proposed Topological Regression (TR), a computationally efficient and highly interpretable QSAR model that maps distances in the chemical domain to distances in the activity domain, has shown predictive performance comparable to state-of-the-art deep learning-based models. However, TR’s dependence on simple random sampling-based anchor selection and utilization of radial basis function for response reconstruction constrain its interpretability and predictive capacity. To address these limitations, we propose Adaptive Topological Regression (AdapToR) with adaptive anchor selection and optimization-based reconstruction. We evaluated AdapToR on the NCI60 GI50 dataset, which consists of over 50,000 drug responses across 60 human cancer cell lines, and compared its performance to Transformer CNN, Graph Transformer, TR, and other baseline models. The results demonstrate that AdapToR outperforms competing QSAR models for drug response prediction with significantly lower computational cost and greater interpretability as compared to deep learning-based models.more » « less
An official website of the United States government

