Plasmonic photocatalysis is an emerging research field that holds promise for sustainable energy applications, particularly in solar energy conversion. In this study, we focus on the enhancement of broadband light absorption capabilities for plasmonic photocatalyst under white light illumination. By replacing parts of the catalyst with solar absorber, we can significantly improve the total reaction rate under mild heating conditions with less catalyst. Through careful comparison of reaction conditions and systematic optimization of the contributions from photothermal and non-thermal effects, we demonstrate a substantial enhancement in broadband light absorption capacity and overall light effectiveness, paving the way for advanced plasmonic photocatalysts with greater efficiency and practical applicability using solar light as the energy source.
more »
« less
Challenges and prospects of plasmonic metasurfaces for photothermal catalysis
Abstract Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants.
more »
« less
- Award ID(s):
- 2029553
- PAR ID:
- 10348495
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 11
- Issue:
- 13
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 3035 to 3056
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The nonradiative conversion of light to heat by plasmonic nanostructures, the so‐called plasmonic photothermal effect, has attracted enormous attention due to their widespread potential applications. Herein, the perspectives on the design and preparation of plasmonic nanostructures for light to heat or photothermal conversion are provided. The general principle of plasmonic photothermal conversion is first introduced, and then, the strategies for improving efficiency are discussed, which is the focus of this field. Then, five typical application types are used, including solar energy harvesting, photothermal actuation, photothermal therapy, laser‐induced color printing, and high‐temperature photothermal devices, to elucidate how to tailor the nanomaterials to meet the requirements of these specific applications. In addition to the photothermal effect, other unique physical and chemical properties are coupled to further explore the application scenarios of plasmonic photothermal materials. Finally, a summary and the perspectives on the directions that may lead to the future development of this exciting field are also given.more » « less
-
Plasmonic photocatalysis presents a promising method for light-to-matter conversion. However, most current studies focused on understanding the relative importance of thermal and nonthermal effects while their synergistic effects remained less studied. Here, we propose an index, termed Overall Light Effectiveness (OLE), to capture the combined impact of these light effects on reactions. By systematically varying the thickness of catalyst layers, we isolated thermal and nonthermal contributions and optimized them to achieve maximum light enhancement. We demonstrate the approach using carbon dioxide hydrogenation reaction on titania-supported rhodium nanoparticles as a model reaction system. It shows a generalizable potential in designing catalyst systems with optimum combinations of heating and light illumination, especially with broadband light illumination such as sunlight, for achieving the most economical light-to-matter conversion in plasmonic catalysis.more » « less
-
Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials.more » « less
-
Carbon and semiconductor nanoparticles are promising photothermal materials for various solar-driven applications. Inevitable recombination of photoinduced charge carriers in a single constituent, however, hinders the realization of a greater photothermal effect. Core–shell heterostructures utilizing the donor–acceptor pair concept with high-quality interfaces can inhibit energy loss from the radiation relaxation of excited species, thereby enhancing the photothermal effect. Here, core–shell structures composed of a covellite (CuS) shell (acceptor) and spherical carbon nanoparticle (CP) core (donor) (abbreviated as CP/CuS) are proposed to augment the photothermal conversion efficiency via the Förster resonance energy transfer (FRET) mechanism. The close proximity and spectral overlap of the donor and acceptor trigger the FRET mechanism, where the electronic excitation relaxation energy of the CP reinforces the plasmonic resonance and near-infrared absorption in CuS, resulting in boosting the overall photothermal conversion efficiency. CP/CuS core–shell coated on polyurethane (PU) foam exhibits a total solar absorption of 97.1%, leading to an elevation in surface temperature of 61.6 °C in dry conditions under simulated solar illumination at a power density of 1 kW m–2 (i.e., 1 sun). Leveraging the enhanced photothermal conversion emanated from the energy transfer effect in the core–shell structure, CP/CuS-coated PU foam achieves an evaporation rate of 1.62 kg m–2 h–1 and an energy efficiency of 93.8%. Thus, amplifying photothermal energy generation in core–shell structures via resonance energy transfer can be promising in solar energy-driven applications and thus merits further exploration.more » « less