- Award ID(s):
- 1757351
- PAR ID:
- 10158959
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 4
- Issue:
- 31-32
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 1749 to 1758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Plasmon-mediated electrocatalysis based on plasmonic gold nanoparticles (Au NPs) has emerged as a promising approach to facilitate electrochemical reactions with the introduction of light to excite the plasmonic electrodes. We have investigated the electrochemical oxidation of 4-(hydroxymethyl)benzoic acid (4-HMBA) on gold (Au), nickel (Ni), and platinum (Pt) metal working electrodes in alkaline electrolytes. Au has the lowest onset potential for catalyzing the electrooxidation of 4-HMBA among the three metals in base, whereas Pt does not catalyze the electrooxidation of 4-HMBA under alkaline conditions, although it is conventionally a good electrocatalyst for alcohol oxidation. Both 4-carboxybenzaldehyde and terephthalic acid are detected as the products of electrochemical oxidation of 4-HMBA on the Au working electrode by high-performance liquid chromatography . The electrodeposited Au NPs on indium tin oxide (ITO)-coated glass is further utilized as the working electrode for the 4-HMBA electrooxidation. With its broad absorption in the visible and near-infrared range, we show that the Au NPs on the ITO electrode could enhance the electrochemical oxidation of 4-HMBA under green and red LED light illuminations (505 and 625 nm). A possible reaction mechanism is proposed for the electrochemical oxidation of 4-HMBA on Au working electrodes in an alkaline electrolyte.more » « less
-
This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles) Rodolphe Antoine (Ed.)
This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of −36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.
-
Protein-functionalized nanoparticles introduce a potentially novel drug delivery method for medical therapeutics, including involvement in cancer therapies and as contrast agents in imaging. Gold and silver nanoparticles are of particular interest due to their distinctive properties. Extensive research shows that gold nanoparticles demonstrate incredible photothermal properties and non-toxic behavior, while silver nanoparticles exhibit antibacterial properties but increase toxicity for human use. However, little is known regarding the properties or applications of hybrid silver-gold particles. This study measured the UV-Vis absorbance spectrum for 40 nm diameter Au, streptavidin-conjugated Au, Ag@Au hybrid, Ag nanoparticles, and Transient Absorbance Spectra of Au. Analysis indicates that the hybrid particles exhibit characteristics of both Ag and Au particles, implying potential applications similar to both Ag and Au nanoparticles.more » « less
-
The photochemistry of a plasmonic biomaterial that consisted of gold nanoparticles (AuNP) on the exterior of the iron sequestration protein, ferritin (Ftn), was investigated. The light driven photochemistry of the hybrid system was studied mechanistically and for the reduction of the high priority pollutant, chromate, Cr( vi ) as CrO 4 2− . In the absence of aqueous Cr( vi ), but in the presence of a sacrificial electron donor, the Fe( iii ) oxyhydroxide semiconducting core of Ftn underwent a photoreaction to release Fe( ii ) when exposed to light having wavelengths, λ < 475 nm. AuNP grown on the exterior of the Ftn produced plasmonic heterostructures (Au/Ftn) that allowed similar photochemistry to occur at longer wavelengths of light ( i.e. , λ > 475 nm). Au/Ftn also facilitated the reduction of Cr( vi ) to Cr( iii ) in the presence of visible light ( λ > 475 nm), a reaction that was not observed if AuNP were not attached to the Ftn cage. Results also indicated that AuNP need to be intimately bound to Ftn to extend the photochemistry of Au/Ftn to longer light wavelengths, relative to Au-free Ftn.more » « less
-
Haasch, Richard ; Graham, Dan ; Podraza, Nikolas ; Shard, Alexander (Ed.)
Spectroscopic ellipsometry and ultraviolet-visible (UV-VIS) spectrometry were utilized to study the optical properties of ferroelectric lead lanthanum zirconate titanate (PLZT) films. These films were deposited on platinized silicon [Si(100)/ SiO2/TiO2/Pt(111)] substrates using the chemical solution deposition method. Films were annealed at two different temperatures (650 and 750 °C) using rapid thermal annealing. Shimadzu UV-1800 UV-VIS spectrophotometer with a resolution of 1 nm was used to measure the reflectance data in the spectral range of 300–1000 nm with a step size of 1 nm. The bandgap values were determined from the reflectance spectra using appropriate equations. A J.A. Woollam RC2 small spot spectroscopic ellipsometer was used to obtain the change in amplitude (Ψ) and phase (Δ) of polarized light upon reflection from the film surface. The spectra were recorded in the wavelength range of 210–1500 nm at an incident angle of 65°. Refractive index (n) and extinction coefficient (k) were obtained by fitting the spectra (Ψ, Δ) with the appropriate models. No significant changes were observed in the optical constants of PLZT films annealed at 650 and 750 °C. The optical transparency and the strong absorption in the ultraviolet (UV) region of PLZT films make them an attractive material for optoelectronic and UV sensing applications.