Abstract MotivationTools for pairwise alignments between 3D structures of proteins are of fundamental importance for structural biology and bioinformatics, enabling visual exploration of evolutionary and functional relationships. However, the absence of a user-friendly, browser-based tool for creating alignments and visualizing them at both 1D sequence and 3D structural levels makes this process unnecessarily cumbersome. ResultsWe introduce a novel pairwise structure alignment tool (rcsb.org/alignment) that seamlessly integrates into the RCSB Protein Data Bank (RCSB PDB) research-focused RCSB.org web portal. Our tool and its underlying application programming interface (alignment.rcsb.org) empowers users to align several protein chains with a reference structure by providing access to established alignment algorithms (FATCAT, CE, TM-align, or Smith–Waterman 3D). The user-friendly interface simplifies parameter setup and input selection. Within seconds, our tool enables visualization of results in both sequence (1D) and structural (3D) perspectives through the RCSB PDB RCSB.org Sequence Annotations viewer and Mol* 3D viewer, respectively. Users can effortlessly compare structures deposited in the PDB archive alongside more than a million incorporated Computed Structure Models coming from the ModelArchive and AlphaFold DB. Moreover, this tool can be used to align custom structure data by providing a link/URL or uploading atomic coordinate files directly. Importantly, alignment results can be bookmarked and shared with collaborators. By bridging the gap between 1D sequence and 3D structures of proteins, our tool facilitates deeper understanding of complex evolutionary relationships among proteins through comprehensive sequence and structural analyses. Availability and implementationThe alignment tool is part of the RCSB PDB research-focused RCSB.org web portal and available at rcsb.org/alignment. Programmatic access is available via alignment.rcsb.org. Frontend code has been published at github.com/rcsb/rcsb-pecos-app. Visualization is powered by the open-source Mol* viewer (github.com/molstar/molstar and github.com/molstar/rcsb-molstar) plus the Sequence Annotations in 3D Viewer (github.com/rcsb/rcsb-saguaro-3d).
more »
« less
RNAStructViz: graphical base pairing analysis
Abstract Summary We present a new graphical tool for RNA secondary structure analysis. The central feature is the ability to visually compare/contrast up to three base pairing configurations for a given sequence in a compact, standardized circular arc diagram layout. This is complemented by a built-in CT-style file viewer and radial layout substructure viewer which are directly linked to the arc diagram window via the zoom selection tool. Additional functionality includes the computation of some numerical information, and the ability to export images and data for later use. This tool should be of use to researchers seeking to better understand similarities and differences between structural alternatives for an RNA sequence. Availability and implementation https://github.com/gtDMMB/RNAStructViz/wiki.
more »
« less
- Award ID(s):
- 1815044
- PAR ID:
- 10348532
- Editor(s):
- Gorodkin, Jan
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 37
- Issue:
- 20
- ISSN:
- 1367-4803
- Page Range / eLocation ID:
- 3660 to 3661
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a tool for multi-omics data analysis that enables simultaneous visualization of up to four types of omics data on organism-scale metabolic network diagrams. The tool’s interactive web-based metabolic charts depict the metabolic reactions, pathways, and metabolites of a single organism as described in a metabolic pathway database for that organism; the charts are constructed using automated graphical layout algorithms. The multi-omics visualization facility paints each individual omics dataset onto a different “visual channel” of the metabolic-network diagram. For example, a transcriptomics dataset might be displayed by coloring the reaction arrows within the metabolic chart, while a companion proteomics dataset is displayed as reaction arrow thicknesses, and a complementary metabolomics dataset is displayed as metabolite node colors. Once the network diagrams are painted with omics data, semantic zooming provides more details within the diagram as the user zooms in. Datasets containing multiple time points can be displayed in an animated fashion. The tool will also graph data values for individual reactions or metabolites designated by the user. The user can interactively adjust the mapping from data value ranges to the displayed colors and thicknesses to provide more informative diagrams.more » « less
-
null (Ed.)Abstract RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences that provides a single access point to 44 RNA resources and >18 million ncRNA sequences from a wide range of organisms and RNA types. RNAcentral now also includes secondary (2D) structure information for >13 million sequences, making RNAcentral the world’s largest RNA 2D structure database. The 2D diagrams are displayed using R2DT, a new 2D structure visualization method that uses consistent, reproducible and recognizable layouts for related RNAs. The sequence similarity search has been updated with a faster interface featuring facets for filtering search results by RNA type, organism, source database or any keyword. This sequence search tool is available as a reusable web component, and has been integrated into several RNAcentral member databases, including Rfam, miRBase and snoDB. To allow for a more fine-grained assignment of RNA types and subtypes, all RNAcentral sequences have been annotated with Sequence Ontology terms. The RNAcentral database continues to grow and provide a central data resource for the RNA community. RNAcentral is freely available at https://rnacentral.org.more » « less
-
Visual thinking with diagrams is a crucial skill for learning and problem-solving in STEM subjects. To improve in this area, students need a variety of visual problems for deliberate practice. However, in our interviews, educators shared that they struggle to create these practice exercises because of limitations of existing tools. We introduce Edgeworth, a tool designed to help educators easily create visual problems. Edgeworth works in two main ways: firstly, it takes a single diagram from the user and systematically alters it to produce many variations, which the educator can then choose from to create multiple problems. Secondly, it automates the layout of diagrams, ensuring consistent high quality without the need for manual adjustments. To assess Edgeworth, we carried out case studies, a technical evaluation, and expert walkthrough demonstrations. We show that Edgeworth can create problems in three domains: geometry, chemistry, and discrete math. These problems were authored in just 15 lines of Edgeworth code on average. Edgeworth generated usable answer options within the first 10 diagram variations in 87% of authored problems. Finally, educators gave positive feedback on Edgeworth's utility and the real-world applicability of its outputs.more » « less
-
Buchin, Kevin and (Ed.)Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams - a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation.more » « less
An official website of the United States government

