skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A model of persistent breaking of continuous symmetry
We consider a UV-complete field-theoretic model in general dimensions, including d=2+1, which consists of two copies of thelong-range vector models, with O(m) and O(N-m) global symmetry groups,perturbed by double-trace operators.Using conformal perturbation theorywe find weakly-coupled IR fixed points for N\geq 6 N ≥ 6 that reveal a spontaneousbreaking of global symmetry. Namely, at finite temperature the lower rank group is broken,with the pattern persisting at all temperatures due to scale-invariance. We provide evidence that the models in question are unitary and invariant under full conformal symmetry. Furthermore, we show that this model exhibits a continuous family of weakly interacting field theories at finite N.  more » « less
Award ID(s):
2013812
PAR ID:
10348657
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SciPost Physics
Volume:
12
Issue:
6
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a family of electron-based coupled-wire models of bosonic orbifold topological phases, referred to as twist liquids, in two spatial dimensions. All local fermion degrees of freedom are gapped and removed from the topological order by many-body interactions. Bosonic chiral spin liquids and anyonic superconductors are constructed on an array of interacting wires, each supports emergent massless Majorana fermions that are non-local (fractional) and constitute the S O ( N ) Kac-Moody Wess-Zumino-Witten algebra at level 1. We focus on the dihedral D k symmetry of S O ( 2 n ) 1 , and its promotion to a gauge symmetry by manipulating the locality of fermion pairs. Gauging the symmetry (sub)group generates the C / G twist liquids, where G = Z 2 for C = U ( 1 ) l , S U ( n ) 1 , and G = Z 2 , Z k , D k for C = S O ( 2 n ) 1 . We construct exactly solvable models for all of these topological states. We prove the presence of a bulk excitation energy gap and demonstrate the appearance of edge orbifold conformal field theories corresponding to the twist liquid topological orders. We analyze the statistical properties of the anyon excitations, including the non-Abelian metaplectic anyons and a new class of quasiparticles referred to as Ising-fluxons. We show an eight-fold periodic gauging pattern in S O ( 2 n ) 1 / G by identifying the non-chiral components of the twist liquids with discrete gauge theories. 
    more » « less
  2. null (Ed.)
    A bstract We study O ( n )-symmetric two-dimensional conformal field theories (CFTs) for a continuous range of n below two. These CFTs describe the fixed point behavior of self-avoiding loops. There is a pair of known fixed points connected by an RG flow. When n is equal to two, which corresponds to the Kosterlitz-Thouless critical theory, the fixed points collide. We find that for n generic these CFTs are logarithmic and contain negative norm states; in particular, the O ( n ) currents belong to a staggered logarithmic multiplet. Using a conformal bootstrap approach we trace how the negative norm states decouple at n = 2, restoring unitarity. The IR fixed point possesses a local relevant operator, singlet under all known global symmetries of the CFT, and, nevertheless, it can be reached by an RG flow without tuning. Besides, we observe logarithmic correlators in the closely related Potts model. 
    more » « less
  3. A<sc>bstract</sc> We investigate finite-temperature observables in three-dimensional largeNcritical vector models taking into account the effects suppressed by$$ \frac{1}{N} $$ 1 N . Such subleading contributions are captured by the fluctuations of the Hubbard-Stratonovich auxiliary field which need to be handled with care due to a subtle divergence structure which we clarify. The examples we consider include the scalarO(N) model, the Gross-Neveu model, the Nambu-Jona-Lasinio model and the massless Chern-Simons Quantum Electrodynamics. We present explicit results for the free energy density to the subleading order in$$ \frac{1}{N} $$ 1 N , which captures the thermal one-point function of the stress-energy tensor to this order. We also include the dependence on a chemical potential. We determine the Wilson coefficient in the thermal effective action that is sensitive to global symmetry for the first time directly in interacting CFTs, which produces a symmetry-resolved asymptotic density of states. We further provide a formula from diagrammatics for the one-point functions of general single-trace higher-spin currents. We observe that in most cases considered, these subleading effects lift the apparent degeneracies between observables in different models at infiniteN, while in special cases the discrepancies only start to appear at the next-to-subleading order. 
    more » « less
  4. A bstract We study operators with large charge j in the d -dimensional O ( N ) model with long range interactions that decrease with the distance as 1/ r d + s , where s is a continuous parameter. We consider the double scaling limit of large N , large j with $$ j/N=\hat{j} $$ j / N = j ̂ fixed, and identify the semiclassical saddle point that captures the two-point function of the large charge operators in this limit. The solution is given in terms of certain ladder conformal integrals that have recently appeared in the literature on fishnet models. We find that the scaling dimensions for general s interpolate between $$ {\Delta }_j\sim \frac{\left(d-s\right)}{2}j $$ ∆ j ∼ d − s 2 j at small $$ \hat{j} $$ j ̂ and $$ {\Delta }_j\sim \frac{\left(d+s\right)}{2}j $$ ∆ j ∼ d + s 2 j at large $$ \hat{j} $$ j ̂ , which is a qualitatively different behavior from the one found in the short range version of the O ( N ) model. We also derive results for the structure constants and 4-point functions with two large charge and one or two finite charge operators. Using a description of the long range models as defects in a higher dimensional local free field theory, we also obtain the scaling dimensions in a complementary way, by mapping the problem to a cylinder in the presence of a chemical potential for the conserved charge. 
    more » « less
  5. We investigate the behavior of higher-form symmetries at variousquantum phase transitions. We consider discrete 1-form symmetries, whichcan be either part of the generalized concept “categorical symmetry”(labelled as \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) )introduced recently, or an explicit Z_N^{(1)} Z N ( 1 ) 1-form symmetry. We demonstrate that for many quantum phase transitionsinvolving a Z_N^{(1)} Z N ( 1 ) or \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) symmetry, the following expectation value \langle \left( O_\mathcal{C}\right)^2 \rangle ⟨ ( O 𝒞 ) 2 ⟩ takes the form \langle \left( \log O_\mathcal{C} \right)^2 \rangle \sim - \frac{A}{\epsilon} P + b \log P ⟨ ( log O 𝒞 ) 2 ⟩ ∼ − A ϵ P + b log P , where O_\mathcal{C} O 𝒞 is an operator defined associated with loop \mathcal{C} 𝒞 (or its interior \mathcal{A} 𝒜 ),which reduces to the Wilson loop operator for cases with an explicit Z_N^{(1)} Z N ( 1 ) 1-form symmetry. P P is the perimeter of \mathcal{C} 𝒞 ,and the b \log P b log P term arises from the sharp corners of the loop \mathcal{C} 𝒞 ,which is consistent with recent numerics on a particular example. b b is a universal microscopic-independent number, which in (2+1)d ( 2 + 1 ) d is related to the universal conductivity at the quantum phasetransition. b b can be computed exactly for certain transitions using the dualitiesbetween (2+1)d ( 2 + 1 ) d conformal field theories developed in recent years. We also compute the"strange correlator" of O_\mathcal{C} O 𝒞 : S_{\mathcal{C}} = \langle 0 | O_\mathcal{C} | 1 \rangle / \langle 0 | 1 \rangle S 𝒞 = ⟨ 0 | O 𝒞 | 1 ⟩ / ⟨ 0 | 1 ⟩ where |0\rangle | 0 ⟩ and |1\rangle | 1 ⟩ are many-body states with different topological nature. 
    more » « less