We look at the action of finite subgroups of [Formula: see text] on [Formula: see text], viewed as a CR manifold, both with the standard CR structure as the unit sphere in [Formula: see text] and with a perturbed CR structure known as the Rossi sphere. We show that quotient manifolds from these actions are indeed CR manifolds, and relate the order of the subgroup of [Formula: see text] to the asymptotic distribution of the Kohn Laplacian’s eigenvalues on the quotient. We show that the order of the subgroup determines whether the quotient of the Rossi sphere by the action of that subgroup is CR embeddable. Finally, in the unperturbed case, we prove that we can determine the size of the subgroup by using the point spectrum.
more »
« less
Obstruction flat rigidity of the CR 3-sphere
Abstract We consider the obstruction flatness problem for small deformations of the standard CR 3-sphere. That rigidity holds for the CR sphere was previously known (in all dimensions) for the case of embeddable CR structures, where it also holds at the infinitesimal level. In the 3-dimensional case, however, a CR structure need not be embeddable.Unlike in the embeddable case, it turns out that in the nonembeddable case there is an infinite-dimensional space of solutions to the linearized obstruction flatness equation on the standard CR 3-sphere and this space defines a natural complement to the tangent space of the embeddable deformations. In spite of this, we show that the CR 3-sphere does not admit nontrivial obstruction flat deformations, embeddable or nonembeddable.
more »
« less
- Award ID(s):
- 1900955
- PAR ID:
- 10348678
- Date Published:
- Journal Name:
- Journal für die reine und angewandte Mathematik (Crelles Journal)
- Volume:
- 2021
- Issue:
- 781
- ISSN:
- 0075-4102
- Page Range / eLocation ID:
- 105 to 126
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study an analog in CR-geometry of the conformal volume of Li–Yau. In particular, to submanifolds of odd-dimensional spheres that are Legendrian or, more generally, horizontal with respect to the sphere’s standard CR-structure, we associate a quantity that is invariant under the CR-automorphisms of the sphere. We apply this concept to a corresponding notion of Willmore energy.more » « less
-
This paper finds matching building blocks for the construction of a compact manifold with G2 holonomy and nodal singularities along circles using twisted connected sum method by solving the Calabi conjecture on certain asymptotically cylindrical manifolds with nodal singularities. However, by comparison to the untwisted connected sum case, it turns out that the obstruction space for the singular twisted connected sum construction is infinite dimensional. By analyzing the obstruction term, there are strong evidences that the obstruction may be resolved if a further gluing is performed in order to get a compact manifold with G2 holonomy and isolated conical singularities with link S3×S3.more » « less
-
Abstract Let be the three‐dimensional space form of constant curvature , that is, Euclidean space , the sphere , or hyperbolic space . Let be a smooth, closed, strictly convex surface in . We define an outer billiard map on the four‐dimensional space of oriented complete geodesics of , for which the billiard table is the subset of consisting of all oriented geodesics not intersecting . We show that is a diffeomorphism when is quadratically convex. For , has a Kähler structure associated with the Killing form of . We prove that is a symplectomorphism with respect to its fundamental form and that can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in defined in terms of the standard symplectic structure. We show that does not preserve the fundamental symplectic form on associated with the cross product on , for . We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points.more » « less
-
The main result of this paper is that any 3-dimensional manifold with a finite group action is equivariantly invertibly homology cobordant to a hyperbolic manifold; this result holds with suitable twisted coefficients as well. The following two consequences motivated this work. First, there are hyperbolic equivariant corks (as defined in previous work of the authors) for a wide class of finite groups. Second, any finite group that acts on a homology 3-sphere also acts on a hyperbolic homology 3-sphere. The theorem has other corollaries, including the existence of infinitely many hyperbolic homology spheres that support free Zp-actions that do not extend over any contractible manifolds, and (from the non-equivariant version of the theorem) infinitely many that bound homology balls but do not bound contractible manifolds. In passing, it is shown that the invertible homology cobordism relation on 3-manifolds is antisymmetric, and thus a partial order.more » « less
An official website of the United States government

