skip to main content


Title: Multi-view learning for lymph node metastasis prediction using tumor and nodal radiomics in gastric cancer
Abstract Purpose. This study aims to develop and validate a multi-view learning method by the combination of primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status in gastric cancer (GC). Methods. A total of 170 contrast-enhanced abdominal CT images from GC patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection approach including Pearson correlation analysis and supervised feature selection method based on test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics features respectively. Two types of discriminative features were then learned by an unsupervised multi-view partial least squares (UMvPLS) for a latent common space on which a logistic regression classifier is trained. Five repeated random hold-out experiments were employed. Results. On 20-dimensional latent common space, area under receiver operating characteristic curve (AUC), precision, accuracy, recall and F1-score are 0.9531 ± 0.0183, 0.9260 ± 0.0184, 0.9136 ± 0.0174, 0.9468 ± 0.0106 and 0.9362 ± 0.0125 for the training cohort respectively, and 0.8984 ± 0.0536, 0.8671 ± 0.0489, 0.8500 ± 0.0599, 0.9118 ± 0.0550 and 0.8882 ± 0.0440 for the validation cohort respectively (reported as mean ± standard deviation). It shows a better discrimination capability than single-view methods, our previous method, and eight baseline methods. When the dimension was reduced to 2, the model not only has effective prediction performance, but also is convenient for data visualization. Conclusions. Our proposed method by integrating radiomics features of primary tumor and LN can be helpful in predicting lymph node metastasis in patients of GC. It shows multi-view learning has great potential for guiding the prognosis and treatment decision-making in GC.  more » « less
Award ID(s):
2009689
NSF-PAR ID:
10348711
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physics in Medicine & Biology
Volume:
67
Issue:
5
ISSN:
0031-9155
Page Range / eLocation ID:
055007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    CD8+T cell in pancreatic ductal adenocarcinoma (PDAC) is closely related to the prognosis and treatment response of patients. Accurate preoperative CD8+T‐cell expression can better identify the population benefitting from immunotherapy.

    Purpose

    To develop and validate a machine learning classifier based on noncontrast magnetic resonance imaging (MRI) for the preoperative prediction of CD8+T‐cell expression in patients with PDAC.

    Study Type

    Retrospective cohort study.

    Population

    Overall, 114 patients with PDAC undergoing MR scan and surgical resection; 97 and 47 patients in the training and validation cohorts.

    Field Strength/Sequence/3 T

    Breath‐hold single‐shot fast‐spin echo T2‐weighted sequence and noncontrast T1‐weighted fat‐suppressed sequences.

    Assessment

    CD8+T‐cell expression was quantified using immunohistochemistry. For each patient, 2232 radiomics features were extracted from noncontrast T1‐ and T2‐weighted images and reduced using the Wilcoxon rank‐sum test and least absolute shrinkage and selection operator method. Linear discriminative analysis was used to construct radiomics and mixed models. Model performance was determined by its discriminative ability, calibration, and clinical utility.

    Statistical Tests

    Kaplan–Meier estimates, Student's t‐test, the Kruskal–Wallis H test, and the chi‐square test, receiver operating characteristic curve, and decision curve analysis.

    Results

    A log‐rank test showed that the survival duration in the CD8‐high group (25.51 months) was significantly longer than that in the CD8‐low group (22.92 months). The mixed model included all MRI characteristics and 13 selected radiomics features, and the area under the curve (AUC) was 0.89 (95% confidence interval [CI], 0.77–0.92) and 0.69 (95% CI, 0.53–0.82) in the training and validation cohorts. The radiomics model included 13 radiomics features, which showed good discrimination in the training cohort (AUC, 0.85; 95% CI, 0.77–0.92) and the validation cohort (AUC, 0.76; 95% CI, 0.61–0.87).

    Data Conclusions

    This study developed a noncontrast MRI‐based radiomics model that can preoperatively determine CD8+T‐cell expression in patients with PDAC and potentially immunotherapy planning.

    Evidence Level

    5

    Technical Efficacy

    Stage 2

     
    more » « less
  2. Abstract Non-small-cell lung cancer (NSCLC) represents approximately 80–85% of lung cancer diagnoses and is the leading cause of cancer-related death worldwide. Recent studies indicate that image-based radiomics features from positron emission tomography/computed tomography (PET/CT) images have predictive power for NSCLC outcomes. To this end, easily calculated functional features such as the maximum and the mean of standard uptake value (SUV) and total lesion glycolysis (TLG) are most commonly used for NSCLC prognostication, but their prognostic value remains controversial. Meanwhile, convolutional neural networks (CNN) are rapidly emerging as a new method for cancer image analysis, with significantly enhanced predictive power compared to hand-crafted radiomics features. Here we show that CNNs trained to perform the tumor segmentation task, with no other information than physician contours, identify a rich set of survival-related image features with remarkable prognostic value. In a retrospective study on pre-treatment PET-CT images of 96 NSCLC patients before stereotactic-body radiotherapy (SBRT), we found that the CNN segmentation algorithm (U-Net) trained for tumor segmentation in PET and CT images, contained features having strong correlation with 2- and 5-year overall and disease-specific survivals. The U-Net algorithm has not seen any other clinical information (e.g. survival, age, smoking history, etc.) than the images and the corresponding tumor contours provided by physicians. In addition, we observed the same trend by validating the U-Net features against an extramural data set provided by Stanford Cancer Institute. Furthermore, through visualization of the U-Net, we also found convincing evidence that the regions of metastasis and recurrence appear to match with the regions where the U-Net features identified patterns that predicted higher likelihoods of death. We anticipate our findings will be a starting point for more sophisticated non-intrusive patient specific cancer prognosis determination. For example, the deep learned PET/CT features can not only predict survival but also visualize high-risk regions within or adjacent to the primary tumor and hence potentially impact therapeutic outcomes by optimal selection of therapeutic strategy or first-line therapy adjustment. 
    more » « less
  3. null (Ed.)
    Introduction: Alzheimer’s disease (AD) causes progressive irreversible cognitive decline and is the leading cause of dementia. Therefore, a timely diagnosis is imperative to maximize neurological preservation. However, current treatments are either too costly or limited in availability. In this project, we explored using retinal vasculature as a potential biomarker for early AD diagnosis. This project focuses on stage 3 of a three-stage modular machine learning pipeline which consisted of image quality selection, vessel map generation, and classification [1]. The previous model only used support vector machine (SVM) to classify AD labels which limited its accuracy to 82%. In this project, random forest and gradient boosting were added and, along with SVM, combined into an ensemble classifier, raising the classification accuracy to 89%. Materials and Methods: Subjects classified as AD were those who were diagnosed with dementia in “Dementia Outcome: Alzheimer’s disease” from the UK Biobank Electronic Health Records. Five control groups were chosen with a 5:1 ratio of control to AD patients where the control patients had the same age, gender, and eye side image as the AD patient. In total, 122 vessel images from each group (AD and control) were used. The vessel maps were then segmented from fundus images through U-net. A t-test feature selection was first done on the training folds and the selected features was fed into the classifiers with a p-value threshold of 0.01. Next, 20 repetitions of 5-fold cross validation were performed where the hyperparameters were solely tuned on the training data. An ensemble classifier consisting of SVM, gradient boosting tree, and random forests was built and the final prediction was made through majority voting and evaluated on the test set. Results and Discussion: Through ensemble classification, accuracy increased by 4-12% relative to the individual classifiers, precision by 9-15%, sensitivity by 2-9%, specificity by at least 9-16%, and F1 score by 712%. Conclusions: Overall, a relatively high classification accuracy was achieved using machine learning ensemble classification with SVM, random forest, and gradient boosting. Although the results are very promising, a limitation of this study is that the requirement of needing images of sufficient quality decreased the amount of control parameters that can be implemented. However, through retinal vasculature analysis, this project shows machine learning’s high potential to be an efficient, more cost-effective alternative to diagnosing Alzheimer’s disease. Clinical Application: Using machine learning for AD diagnosis through retinal images will make screening available for a broader population by being more accessible and cost-efficient. Mobile device based screening can also be enabled at primary screening in resource-deprived regions. It can provide a pathway for future understanding of the association between biomarkers in the eye and brain. 
    more » « less
  4. As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization. 
    more » « less
  5. Abstract Purpose

    Utilization of sentinel lymph node biopsy (SLNB) in breast cancer patients with positive nodes after neoadjuvant chemotherapy (NAC) has increased. We examine axillary response rates after NAC in patients with clinical N2‐3 disease to determine whether SLNB should be considered.

    Methods

    Breast cancer patients with clinical N2‐3 (AJCC 7th Edition) disease who received NAC followed by surgery were selected from our institutional tumor registry (2009–2018). Axillary response rates were assessed.

    Results

    Ninety‐nine patients with 100 breast cancers were identified: 59 N2 (59.0%) and 41 (41.0%) N3 disease; 82 (82.0%) treated with axillary lymph node dissection (ALND) and 18 (18.0%) SLNB. The majority (99.0%) received multiagent NAC. In patients undergoing ALND, cCR was observed in 20/82 patients (24.4%), pathologic complete response (pCR) in 15 patients (18.3%), and axillary pCR in 17 patients (20.7%). In patients with a cCR, pCR was identified in 60.0% and was most common in HER2+ patients (34.6%).

    Conclusion

    In this analysis of patients with clinical N2‐3 disease receiving NAC, 79.3% of patients had residual nodal disease at surgery. However, 60.0% of patients with a cCR also had a pCR. This provides the foundation to consider evaluating SLNB and less extensive axillary surgery in this select group.

     
    more » « less