skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-view learning for lymph node metastasis prediction using tumor and nodal radiomics in gastric cancer
Abstract Purpose. This study aims to develop and validate a multi-view learning method by the combination of primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status in gastric cancer (GC). Methods. A total of 170 contrast-enhanced abdominal CT images from GC patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection approach including Pearson correlation analysis and supervised feature selection method based on test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics features respectively. Two types of discriminative features were then learned by an unsupervised multi-view partial least squares (UMvPLS) for a latent common space on which a logistic regression classifier is trained. Five repeated random hold-out experiments were employed. Results. On 20-dimensional latent common space, area under receiver operating characteristic curve (AUC), precision, accuracy, recall and F1-score are 0.9531 ± 0.0183, 0.9260 ± 0.0184, 0.9136 ± 0.0174, 0.9468 ± 0.0106 and 0.9362 ± 0.0125 for the training cohort respectively, and 0.8984 ± 0.0536, 0.8671 ± 0.0489, 0.8500 ± 0.0599, 0.9118 ± 0.0550 and 0.8882 ± 0.0440 for the validation cohort respectively (reported as mean ± standard deviation). It shows a better discrimination capability than single-view methods, our previous method, and eight baseline methods. When the dimension was reduced to 2, the model not only has effective prediction performance, but also is convenient for data visualization. Conclusions. Our proposed method by integrating radiomics features of primary tumor and LN can be helpful in predicting lymph node metastasis in patients of GC. It shows multi-view learning has great potential for guiding the prognosis and treatment decision-making in GC.  more » « less
Award ID(s):
2009689
PAR ID:
10348711
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physics in Medicine & Biology
Volume:
67
Issue:
5
ISSN:
0031-9155
Page Range / eLocation ID:
055007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundOropharyngeal cancer (OPC) exhibits varying responses to chemoradiation therapy, making treatment outcome prediction challenging. Traditional imaging‐based methods often fail to capture the spatial heterogeneity within tumors, which influences treatment resistance and disease progression. Advances in modeling techniques allow for more nuanced analysis of this heterogeneity, identifying distinct tumor regions, or habitats, that drive patient outcomes. PurposeTo interrogate the association between treatment‐induced changes in spatial heterogeneity and chemoradiation resistance of oropharyngeal cancer (OPC) based on a novel tumor habitat analysis. MethodsA mathematical model was used to estimate tumor time dynamics of patients with OPC based on the applied analysis of partial differential equations. The position and momentum of each voxel was propagated according to Fokker‐Planck dynamics, that is, a common model in statistical mechanics. The boundary conditions of the Fokker‐Planck equation were solved based on pre‐ and intra‐treatment (i.e., after 2 weeks of therapy)18F‐FDG‐PET SUV images of patients (n = 56) undergoing definitive (chemo)radiation for OPC as part of a previously conducted prospective clinical trial. Tumor‐specific time dynamics, measured based on the solution of the Fokker‐Planck equation, were generated for each patient. Tumor habitats (i.e., non‐overlapping subregions of the primary tumor) were identified by measuring vector similarity in voxel‐level time dynamics through a fuzzy c‐means clustering algorithm. The robustness of our habitat construction method was quantified using a mean silhouette metric to measure intra‐habitat variability. Fifty‐four habitat‐specific radiomic texture features were extracted from pre‐treatment SUV images and normalized by habitat volume. Univariate Kaplan‐Meier analyses were implemented as a feature selection method, where statistically significant features (p < 0.05, log‐rank) were used to construct a multivariate Cox proportional‐hazards model. Parameters from the resulting Cox model were then used to construct a risk score for each patient, based on habitat‐specific radiomic expression. The patient cohort was stratified by median risk score value and association with recurrence‐free survival (RFS) was evaluated via log‐rank tests. ResultsDynamic tumor habitat analysis partitioned the gross disease of each patient into three spatial subregions. Voxels within each habitat suggested differential response rates in different compartments of the tumor. The minimum mean silhouette value was 0.57 and maximum mean silhouette value was 0.8, where values above 0.7 indicated strong intra‐habitat consistency and values between 0.5 and 0.7 indicated reasonable intra‐habitat consistency. Nine radiomic texture features (three GLRLM, two GLCOM, and three GLSZM) and SUVmax were found to be prognostically significant and were used to build the multivariate Cox model. The resulting risk score was associated with RFS (p = 0.032). By contrast, potential confounding factors (primary tumor volume and mean SUV) were not significantly associated with RFS (p = 0.286 andp = 0.231, respectively). ConclusionWe interrogated spatial heterogeneity of oropharyngeal tumors through the application of a novel algorithm to identify spatial habitats on SUV images. Our habitat construction technique was shown to be robust and habitat‐specific feature spaces revealed distinct underlying radiomic expression patterns. Radiomic features were extracted from dynamic habitats and used to build a risk score which demonstrated prognostic value. 
    more » « less
  2. Background: At the time of cancer diagnosis, it is crucial to accurately classify malignant gastric tumors and the possibility that patients will survive. Objective: This study aims to investigate the feasibility of identifying and applying a new feature extraction technique to predict the survival of gastric cancer patients. Methods: A retrospective dataset including the computed tomography (CT) images of 135 patients was assembled. Among them, 68 patients survived longer than three years. Several sets of radiomics features were extracted and were incorporated into a machine learning model, and their classification performance was characterized. To improve the classification performance, we further extracted another 27 texture and roughness parameters with 2484 superficial and spatial features to propose a new feature pool. This new feature set was added into the machine learning model and its performance was analyzed. To determine the best model for our experiment, Random Forest (RF) classifier, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes (NB) (four of the most popular machine learning models) were utilized. The models were trained and tested using the five-fold cross-validation method. Results: Using the area under ROC curve (AUC) as an evaluation index, the model that was generated using the new feature pool yields AUC = 0.98 ± 0.01, which was significantly higher than the models created using the traditional radiomics feature set (p < 0.04). RF classifier performed better than the other machine learning models. Conclusions: This study demonstrated that although radiomics features produced good classification performance, creating new feature sets significantly improved the model performance. 
    more » « less
  3. Abstract BackgroundDelta radiomics is a high‐throughput computational technique used to describe quantitative changes in serial, time‐series imaging by considering the relative change in radiomic features of images extracted at two distinct time points. Recent work has demonstrated a lack of prognostic signal of radiomic features extracted using this technique. We hypothesize that this lack of signal is due to the fundamental assumptions made when extracting features via delta radiomics, and that other methods should be investigated. PurposeThe purpose of this work was to show a proof‐of‐concept of a new radiomics paradigm for sparse, time‐series imaging data, where features are extracted from a spatial‐temporal manifold modeling the time evolution between images, and to assess the prognostic value on patients with oropharyngeal cancer (OPC). MethodsTo accomplish this, we developed an algorithm to mathematically describe the relationship between two images acquired at time and . These images serve as boundary conditions of a partial differential equation describing the transition from one image to the other. To solve this equation, we propagate the position and momentum of each voxel according to Fokker–Planck dynamics (i.e., a technique common in statistical mechanics). This transformation is driven by an underlying potential force uniquely determined by the equilibrium image. The solution generates a spatial‐temporal manifold (3 spatial dimensions + time) from which we define dynamic radiomic features. First, our approach was numerically verified by stochastically sampling dynamic Gaussian processes of monotonically decreasing noise. The transformation from high to low noise was compared between our Fokker–Planck estimation and simulated ground‐truth. To demonstrate feasibility and clinical impact, we applied our approach to18F‐FDG‐PET images to estimate early metabolic response of patients (n = 57) undergoing definitive (chemo)radiation for OPC. Images were acquired pre‐treatment and 2‐weeks intra‐treatment (after 20 Gy). Dynamic radiomic features capturing changes in texture and morphology were then extracted. Patients were partitioned into two groups based on similar dynamic radiomic feature expression via k‐means clustering and compared by Kaplan–Meier analyses with log‐rank tests (p < 0.05). These results were compared to conventional delta radiomics to test the added value of our approach. ResultsNumerical results confirmed our technique can recover image noise characteristics given sparse input data as boundary conditions. Our technique was able to model tumor shrinkage and metabolic response. While no delta radiomics features proved prognostic, Kaplan–Meier analyses identified nine significant dynamic radiomic features. The most significant feature was Gray‐Level‐Size‐Zone‐Matrix gray‐level variance (p = 0.011), which demonstrated prognostic improvement over its corresponding delta radiomic feature (p = 0.722). ConclusionsWe developed, verified, and demonstrated the prognostic value of a novel, physics‐based radiomics approach over conventional delta radiomics via data assimilation of quantitative imaging and differential equations. 
    more » « less
  4. Wang, Linwei; Dou, Qi; Fletcher, P. Thomas; Speidel, Stefanie; Li, Shuo (Ed.)
    We presented a novel radiomics approach using multimodality MRI to predict the expression of an oncogene (O6-Methylguanine-DNA methyltransferase, MGMT) and overall survival (OS) of glioblastoma (GBM) patients. Specifically, we employed an EffNetV2-T, which was down scaled and modified from EfficientNetV2, as the feature extractor. Besides, we used evidential layers based to control the distribution of prediction outputs. The evidential layers help to classify the high-dimensional radiomics features to predict the methylation status of MGMT and OS. Tests showed that our model achieved an accuracy of 0.844, making it possible to use as a clinic-enabling technique in the diagnosing and management of GBM. Comparison results indicated that our method performed better than existing work. 
    more » « less
  5. Objective: Evaluate the effectiveness of machine learning tools that incorporate spatial information such as disease location and lymph node metastatic patterns-of-spread, for prediction of survival and toxicity in HPV+ oropharyngeal cancer (OPC). Materials & methods: 675 HPV+ OPC patients that were treated at MD Anderson Cancer Center between 2005 and 2013 with curative intent IMRT were retrospectively collected under IRB approval. Risk stratifications incorporating patient radiometric data and lymph node metastasis patterns via an anatomically-adjacent representation with hierarchical clustering were identified. These clusterings were combined into a 3-level patient stratification and included along with other known clinical features in a Cox model for predicting survival outcomes, and logistic regression for toxicity, using independent subsets for training and validation. Results: Four groups were identified and combined into a 3-level stratification. The inclusion of patient stratifications in predictive models for 5-yr Overall survival (OS), 5-year recurrence free survival, (RFS) and Radiation-associated dysphagia (RAD) consistently improved model performance measured using the area under the curve (AUC). Test set AUC improvements over models with clinical covariates, was 9 % for predicting OS, and 18 % for predicting RFS, and 7 % for predicting RAD. For models with both clinical and AJCC covariates, AUC improvement was 7 %, 9 %, and 2 % for OS, RFS, and RAD, respectively. Conclusion: Including data-driven patient stratifications considerably improve prognosis for survival and toxicity outcomes over the performance achieved by clinical staging and clinical covariates alone. These stratifications generalize well to across cohorts, and sufficient information for reproducing these clusters is included. 
    more » « less