skip to main content


Title: Development and Validation of the STEM Study Strategies Questionnaire for STEM College Students
In this research-based paper, we discuss the development of a measure of Rice University students’ STEM study strategies and then explore the measure’s correlation with several important psychological outcomes in a sample of underprepared first-year STEM students (n=94). STEM attrition remains a pressing concern nationally, particularly for students who took less rigorous STEM courses in high school, a population that disproportionally comprises underrepresented minorities. The authors developed an 11-item measure of STEM-specific study strategies, termed the STEM Study Strategies Questionnaire. We explored STEM-specific identity, self-efficacy, and career aspirations, as well as perceived utility of attaining a STEM degree, using a model based on Eccles and Wigfield’s (2002) expectancy-value framework of achievement. An exploratory factor analysis found a four-factor solution to the newly developed scale: Group Work in STEM, Active STEM Learning, Interactions with STEM Professors, and STEM Exam Familiarity. The authors found significant moderate to strong correlations among all psychological variables, as well as with the Group Work and STEM Exam Familiarity factors. Next steps for this research are to develop further measure items to capture each of the four factors and to conduct confirmatory analyses on different samples of STEM students, both those who are relatively underprepared and appropriately prepared for college STEM coursework.  more » « less
Award ID(s):
1565032
NSF-PAR ID:
10348883
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this research-based paper, we explore the relationships among Rice University STEM students’ high school preparation, psychological characteristics, and career aspirations. Although greater high school preparation in STEM coursework predicts higher STEM retention and performance in college [1], objective academic preparation and college performance do not fully explain STEM retention decisions, and the students who leave STEM are often not the lowest performing students [2]. Certain psychosocial experiences may also influence students’ STEM decisions. We explored the predictive validity of 1) a STEM diagnostic exam as an objective measure of high school science and math preparation and 2) self-efficacy as a psychological measure on long-term (three years later) STEM career aspirations and STEM identity of underprepared Rice STEM students. University administrators use diagnostic exam scores (along with other evidence of high school underpreparation) to identify students who might benefit from additional support. Using linear regression to explore the link between diagnostic exam scores and self-efficacy, exam scores predicted self-efficacy a semester after students’ first semester in college; exam scores were also marginally correlated with self-efficacy three years later. Early STEM career aspirations predicted later career aspirations, accounting for 21.3% of the variance of career outcome expectations three years later (β=.462, p=.006). Scores on the math diagnostic exam accounted for an additional 10.1% of the variance in students’ three-year STEM career aspirations (p=.041). Self-efficacy after students’ first semester did not predict future STEM aspirations. Early STEM identity explained 28.8% of the variance in three-year STEM identity (p=.001). Math diagnostic exam scores accounted for only marginal incremental variance after STEM identity, and self-efficacy after students’ first semester did not predict three-year STEM aspirations. Overall, we found that the diagnostic exam provided incremental predictive validity in STEM career aspirations after students’ sixth semester of college, indicating that early STEM preparation has long-lasting ramifications for students’ STEM career intentions. Our next steps include examining whether students’ diagnostic exam scores predict STEM graduation rates and final GPAs for science and math versus engineering majors. 
    more » « less
  2. While much has changed in the seven years since the 2016 start of our NSF S-STEM Program, the WVU Academy of Engineering Success (AcES), the goal to increase the number of graduating engineers and contribute to the diversification of the engineering workforce has remained constant [1], [2]. AcES has endeavored to attract, support, and retain through graduation talented, but underprepared (non-calculus-ready) first-time, full-time engineering and computing undergraduate students from underrepresented populations by implementing established, research-based student success and retention strategies. During the seven (7) years of NSF funding, this program has served 71 students and supported 28 students with renewable S-STEM scholarships. Past research used surveys and individual and focus group interviews to measure AcES scholars' feelings of institutional inclusion, engineering self-efficacy and identity, and assessment of their own development of academic and professional success skills [1], [2]. Results supported the Kruger-Dunning Effect, "a cognitive bias in which unskilled people do not recognize their incompetence in specific areas and often overestimate their abilities" [3], [4], [5]. Specifically, students who did not retain to the second year tended to enter college with unrealistic expectations regarding: (1) the time and effort required to succeed in a challenging major and (2) their ability to succeed with little effort. Students tended to underestimate the challenges and overestimate their ability to meet the challenges. [2], [3], [5]. Instead of focusing on those who left the program, this work focuses on AcES scholars who have completed or nearly completed an engineering or computing degree even through the additional complications and challenges presented by the COVID-19 pandemic. From these successful graduates, we hope to learn what elements of the AcES program were the most impactful to and supportive of their journey. The lessons learned are shared to inform other, future engineering education programs. 
    more » « less
  3. null (Ed.)
    The Academy of Engineering Success (AcES) program, established in 2012 and supported by NSF S-STEM award number 1644119 throughout 2016-2021, employs literature-based, best practices to support and retain underprepared and underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. A total of 71 students, including 21 students supported by S-STEM scholarships, participated in the AcES program between 2016-2019 at a large R1 institution in the mid-Atlantic region. All AcES students participate in a common program during their first year, comprised of: a one-week summer bridge experience, a common fall professional development course and spring “Engineering in History” course, and a common academic advisor. These students also have opportunities for: (1) faculty-student, student-student, and industry mentor-student interaction, (2) academic support and student success education, and (3) major and career exploration – all designed to help students develop feelings of institutional inclusion, engineering self-efficacy and identity, and academic and professional success skills. They also participate in the GRIT, Longitudinal Assessment of Engineering Self-Efficacy (LAESE), and the Motivated Strategies for Learning Questionnaire (MSLQ) surveys plus individual and focus group interviews at the start, midpoint, and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, their beliefs related to the intrinsic value of engineering and learning, their feelings of inclusion and test anxiety, and their self-efficacy related to engineering, math, and coping skills. The interviews provide information related to the student experience, feelings of inclusion, and program impact. Institutional data, combined with the survey and interview responses, are used to examine four research questions designed to examine the relationship of the elements of the AcES program to participants’ academic success and retention in engineering. Early analyses of the student retention data and survey responses from the 2017 and 2018 cohorts indicated students who ultimately left engineering before the start of their second year initially scored higher in areas of engineering self-efficacy and test anxiety, than those who stayed in engineering, while those who retained to the second year began their engineering education with lower self-efficacy scores, but higher scores related to the belief in the intrinsic value of engineering, learning strategy use, and coping self-efficacy. These results suggest that students who start with unrealistically high expectations of their performance leave engineering at higher rates than students who start with lower personal performance expectations, but have stronger value of the field and strategies for meeting challenges. These data appear to support the Kruger-Dunning effect in which students with limited knowledge of a specific field overestimate their abilities to perform in that area or underestimate the level of effort success may require. This paper will add an analysis of the academic success and retention data from 2019 cohort to this research, discuss the impact of COVID-19 to this program and research, as well as illuminate the quantitative results with the qualitative data from individual and focus group interviews regarding the aspects of the AcES program that impact student success, their expectations and methods for overcoming academic challenges, and their feelings of motivation and inclusion. 
    more » « less
  4. A diagnostic of thirty questions administered to incoming STEM students in Fall 2013 and Fall 2015 - Fall 2018 reflects that their spatial visualization skills (SVS) need to be improved. Previous studies in the SVS subject [1], [2], [3] report that well-developed SVS skills lead to students’ success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. Authors [4], [5] mention that aptitude in spatial skills is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. This research reports the qualitative and quantitative results of a project designed to improve SVS’s for STEM students managed under two strategies. The first strategy utilized was a series of face-to-face (FtF), two-hour training sessions taught over six weeks to all majors in STEM. This strategy was offered in Spring 2014 and every semester from Fall 2015 - Spring 2018. The second strategy was an embedded training (ET) implemented by one faculty from Fall 2017- Fall 2018. The faculty embedded the training in the US 1100 freshman seminar and was highly motivated to increase awareness of students on the importance and applicability of SVS in their fields of study. As reported by Swail et al. [6], cognitive, social, and institutional factors are key elements to best support students’ persistence and achievement. Both interventions used in this project encompassed all these factors and were supported by an NSF IUSE grant (2015-2019) to improve STEM retention. The FtF training was taken by 34 students majoring in diverse STEM fields. Its effectiveness was statistically assessed through a t-test to compare the results in the Purdue Spatial Visualization Skills Test - Rotations before and after the training and through analysis of surveys. Results were very positive; 85.29% of the participants improved their scores. The average change in scores was 5.29 (from 16.85 to 22.15; 17.65% improvement) and it was statistically significant (p-value 3.9E-8). On the surveys, 90% of students answered that they were satisfied with the training. Several students reported that they appreciated a connection between SVS, Calculus II and Engineering Graphics classes while others based the satisfaction on perceiving the critical role SVS will play in their careers. Results from the ET strategy were also encouraging. Teaching methods, curriculum and results are discussed in this paper. Adjustments to the teaching methods were done over 3 semesters. In the last semester, the faculty found that covering the modules at a slower pace than in the FtF training, asking the students to complete the pre-and post-diagnostic in class, and introducing the Spatial VisTM app to provide students with additional practice were key elements to assure students success and satisfaction. In conclusion, both strategies were demonstrated to be powerful interventions to increase students’ success because they not only offer students, particularly freshman, a way to refine SVS but also increase motivation in STEM while creating a community among students and faculty. The ET is effective and apt to be institutionalized. Lastly, this experimental research strengthens the literature on SVS. 
    more » « less
  5. As part of our Noyce Capacity Building grant, we examined how existing STEM course content is preparing students for the Missouri Content Assessment (MoCA) exam that is required for state certification. We also examined this through the lens of the recent curriculum designed on the state of Missouri model, which is Unified Science: Biology. Our most recent graduates in STEM Education exhibited difficulty in passing the MoCA exam in their specific STEM area of interest. Data from 2014-2018 showed that only half of our teacher candidates passed their STEM field MoCA exam on the first attempt. Some candidates took as many as four attempts to pass their exams while others were unable to achieve a passing score. In order to increase the number of teacher candidates as well as their success rates on the MoCA exam, we planned targeted revisions to our curriculum and coursework at Webster. One approach we used was to have content experts (faculty from Webster and our partner institution, St. Louis Community College) take the MoCA exams in their respective STEM disciplines. The qualitative survey results, coded using NVivo, and feedback from these experts allowed us to map learning outcomes and knowledge areas found on the exam to information on the MoCA website as well as our existing curriculum and course content. In this presentation, we will report the results of our survey, the impact this had on our curriculum redesign and articulation agreements, and our future strategies for our Track 1 application that were informed by the results of our capacity building activity. We also include use of study guides, practice tests and review sessions for MoCA exams to impact/improve pass rates of STEM Education majors on the content exam. 
    more » « less