Abstract We study the magnetospheric evolution of a nonaccreting spinning black hole (BH) with an initially inclined split monopole magnetic field by means of 3D general relativistic magnetohydrodynamic simulations. This serves as a model for a neutron star (NS) collapse or a BH–NS merger remnant after the inherited magnetosphere has settled into a split monopole field creating a striped wind. We show that the initially inclined split monopolar current sheet aligns over time with the BH equatorial plane. The inclination angle evolves exponentially toward alignment, with an alignment timescale that is inversely proportional to the square of the BH angular velocity, where higher spin results in faster alignment. Furthermore, magnetic reconnection in the current sheet leads to exponential decay of event-horizon-penetrating magnetic flux with nearly the same timescale for all considered BH spins. In addition, we present relations for the BH mass and spin in terms of the period and alignment timescale of the striped wind. The explored scenario of a rotating, aligning, and reconnecting current sheet can potentially lead to multimessenger electromagnetic counterparts to a gravitational-wave event due to the acceleration of particles powering high-energy radiation, plasmoid mergers resulting in coherent radio signals, and pulsating emission due to the initial misalignment of the BH magnetosphere.
more »
« less
Multimessenger Constraints on Magnetic Fields in Merging Black Hole–Neutron Star Binaries
Abstract The LIGO–Virgo–KAGRA Collaboration recently detected gravitational waves (GWs) from the merger of black hole–neutron star (BHNS) binary systems GW200105 and GW200115. No coincident electromagnetic (EM) counterparts were detected. While the mass ratio and BH spin in both systems were not sufficient to tidally disrupt the NS outside the BH event horizon, other, magnetospheric mechanisms for EM emission exist in this regime and depend sensitively on the NS magnetic field strength. Combining GW measurements with EM flux upper limits, we place upper limits on the NS surface magnetic field strength above which magnetospheric emission models would have generated an observable EM counterpart. We consider fireball models powered by the black hole battery mechanism, where energy is output in gamma rays over ≲1 s. Consistency with no detection by Fermi-GBM or INTEGRAL SPI-ACS constrains the NS surface magnetic field to ≲10 15 G. Hence, joint GW detection and EM upper limits rule out the theoretical possibility that the NSs in GW200105 and GW200115, and the putative NS in GW190814, retain dipolar magnetic fields ≳10 15 G until merger. They also rule out formation scenarios where strongly magnetized magnetars quickly merge with BHs. We alternatively rule out operation of the BH-battery-powered fireball mechanism in these systems. This is the first multimessenger constraint on NS magnetic fields in BHNS systems and a novel approach to probe fields at this point in NS evolution. This demonstrates the constraining power that multimessenger analyses of BHNS mergers have on BHNS formation scenarios, NS magnetic field evolution, and the physics of BHNS magnetospheric interactions.
more »
« less
- Award ID(s):
- 1715661
- PAR ID:
- 10348896
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 927
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 56
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ongoing LIGO–Virgo–KAGRA observing run O4 provides an opportunity to discover new multimessenger events, including binary neutron star (BNS) mergers such as GW170817 and the highly anticipated first detection of a multimessenger black hole–neutron star (BH–NS) merger. While BNS mergers were predicted to exhibit early optical emission from mildly relativistic outflows, it has remained uncertain whether the BH–NS merger ejecta provides the conditions for similar signals to emerge. We present the first modeling of early near-ultraviolet/optical emission from mildly relativistic outflows in BH–NS mergers. Adopting optimal binary properties, a mass ratio ofq= 2, and a rapidly rotating BH, we utilize numerical relativity and general relativistic magnetohydrodynamic (GRMHD) simulations to follow the binary’s evolution from premerger to homologous expansion. We use an M1 neutrino transport GRMHD simulation to self-consistently estimate the opacity distribution in the outflows and find a bright near-ultraviolet/optical signal that emerges due to jet-powered cocoon cooling emission, outshining the kilonova emission at early time. The signal peaks at an absolute magnitude of ∼−15 a few hours after the merger, longer than previous estimates, which did not consider the first principles–based jet launching. By late 2024, the Rubin Observatory will have the capability to track the entire signal evolution or detect its peak up to distances of ≳1 Gpc. In 2026, ULTRASAT will conduct all-sky surveys within minutes, detecting some of these events within ∼200 Mpc. The BH–NS mergers with higher mass ratios or lower BH spins would produce shorter and fainter signals.more » « less
-
null (Ed.)Neutron stars (NSs) are extraordinary not only because they are the densest form of matter in the visible Universe but also because they can generate magnetic fields ten orders of magnitude larger than those currently constructed on earth. The combination of extreme gravity with the enormous electromagnetic (EM) fields gives rise to spectacular phenomena like those observed on August 2017 with the merger of a binary neutron star system, an event that generated a gravitational wave (GW) signal, a short γ-ray burst (sGRB), and a kilonova. This event serves as the highlight so far of the era of multimessenger astronomy. In this review, we present the current state of our theoretical understanding of compact binary mergers containing NSs as gleaned from the latest general relativistic magnetohydrodynamic simulations. Such mergers can lead to events like the one on August 2017, GW170817, and its EM counterparts, GRB 170817 and AT 2017gfo. In addition to exploring the GW emission from binary black hole-neutron star and neutron star-neutron star mergers, we also focus on their counterpart EM signals. In particular, we are interested in identifying the conditions under which a relativistic jet can be launched following these mergers. Such a jet is an essential feature of most sGRB models and provides the main conduit of energy from the central object to the outer radiation regions. Jet properties, including their lifetimes and Poynting luminosities, the effects of the initial magnetic field geometries and spins of the coalescing NSs, as well as their governing equation of state, are discussed. Lastly, we present our current understanding of how the Blandford-Znajek mechanism arises from merger remnants as the trigger for launching jets, if, when and how a horizon is necessary for this mechanism, and the possibility that it can turn on in magnetized neutron ergostars, which contain ergoregions, but no horizons.more » « less
-
Abstract The merger of a black hole (BH) and a neutron star (NS) in most cases is expected to leave no material around the remnant BH; therefore, such events are often considered as sources of gravitational waves without electromagnetic counterparts. However, a bright counterpart can emerge if the NS is strongly magnetized, as its external magnetosphere can experience radiative shocks and magnetic reconnection during/after the merger. We use magnetohydrodynamic simulations in the dynamical spacetime of a merging BH–NS binary to investigate its magnetospheric dynamics. We find that compressive waves excited in the magnetosphere develop into monster shocks as they propagate outward. After swallowing the NS, the BH acquires a magnetosphere that quickly evolves into a split-monopole configuration and then undergoes an exponential decay (balding), enabled by magnetic reconnection and also assisted by the ringdown of the remnant BH. This spinning BH drags the split monopole into rotation, forming a transient pulsar-like state. It emits a striped wind if the swallowed magnetic-dipole moment is inclined to the spin axis. We predict two types of transients from this scenario: (1) a fast radio burst emitted by the shocks as they expand to large radii; and (2) an X-ray/γ-ray burst emitted by thee±outflow heated by magnetic dissipation.more » « less
-
Abstract In recent years, there have been significant advances in multimessenger astronomy due to the discovery of the first, and so far only confirmed, gravitational wave event with a simultaneous electromagnetic (EM) counterpart, as well as improvements in numerical simulations, gravitational wave (GW) detectors, and transient astronomy. This has led to the exciting possibility of performing joint analyses of the GW and EM data, providing additional constraints on fundamental properties of the binary progenitor and merger remnant. Here, we present a new Bayesian framework that allows inference of these properties, while taking into account the systematic modeling uncertainties that arise when mapping from GW binary progenitor properties to photometric light curves. We extend the relative binning method presented in Zackay et al. to include extrinsic GW parameters for fast analysis of the GW signal. The focus of our EM framework is on light curves arising from r -process nucleosynthesis in the ejected material during and after merger, the so-called kilonova, and particularly on black hole−neutron star systems. As a case study, we examine the recent detection of GW190425, where the primary object is consistent with being either a black hole or a neutron star. We show quantitatively how improved mapping between binary progenitor and outflow properties, and/or an increase in EM data quantity and quality are required in order to break degeneracies in the fundamental source parameters.more » « less
An official website of the United States government

