We present an approach based upon binary tree tensor network (BTTN) states for computing steady-state current statistics for a many-particle 1D ratchet subject to volume exclusion interactions. The ratcheted particles, which move on a lattice with periodic boundary conditions subject to a time-periodic drive, can be stochastically evolved in time to sample representative trajectories via a Gillespie method. In lieu of generating realizations of trajectories, a BTTN state can variationally approximate a distribution over the vast number of many-body configurations. We apply the density matrix renormalization group algorithm to initialize BTTN states, which are then propagated in time via the time-dependent variational principle (TDVP) algorithm to yield the steady-state behavior, including the effects of both typical and rare trajectories. The application of the methods to ratchet currents is highlighted, but the approach extends naturally to other interacting lattice models with time-dependent driving. Although trajectory sampling is conceptually and computationally simpler, we discuss situations for which the BTTN TDVP strategy can be beneficial.
more »
« less
Using tensor network states for multi-particle Brownian ratchets
The study of Brownian ratchets has taught how time-periodic driving supports a time-periodic steady state that generates nonequilibrium transport. When a single particle is transported in one dimension, it is possible to rationalize the current in terms of the potential, but experimental efforts have ventured beyond that single-body case to systems with many interacting carriers. Working with a lattice model of volume-excluding particles in one dimension, we analyze the impact of interactions on a flashing ratchet’s current. To surmount the many-body problem, we employ the time-dependent variational principle applied to binary tree tensor networks. Rather than propagating individual trajectories, the tensor network approach propagates a distribution over many-body configurations via a controllable variational approximation. The calculations, which reproduce Gillespie trajectory sampling, identify and explain a shift in the frequency of maximum current to higher driving frequency as the lattice occupancy increases.
more »
« less
- Award ID(s):
- 2141385
- PAR ID:
- 10348911
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 156
- Issue:
- 22
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 221103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Dicke model—a paradigmatic example of superradiance in quantum optics—describes an ensemble of atoms which are collectively coupled to a leaky cavity mode. As a result of the cooperative nature of these interactions, the system’s dynamics is captured by the behavior of a single mean-field, collective spin. In this mean-field limit, it has recently been shown that the interplay between photon losses and periodic driving of light–matter coupling can lead to time-crystalline-like behavior of the collective spin (Gonget al2018Phys. Rev. Lett.120040404). In this work, we investigate whether such a Dicke time crystal (TC) is stable to perturbations that explicitly break the mean-field solvability of the conventional Dicke model. In particular, we consider the addition of short-range interactions between the atoms which breaks the collective coupling and leads to complex many-body dynamics. In this context, the interplay between periodic driving, dissipation and interactions yields a rich set of dynamical responses, including long-lived and metastable Dicke-TCs, where losses can cool down the many-body heating resulting from the continuous pump of energy from the periodic drive. Specifically, when the additional short-range interactions are ferromagnetic, we observe time crystalline behavior at non-perturbative values of the coupling strength, suggesting the possible existence of stable dynamical order in a driven-dissipative quantum many-body system. These findings illustrate the rich nature of novel dynamical responses with many-body character in quantum optics platforms.more » « less
-
Abstract We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally periodic and spatially localized structures, in a two-dimensional array of repelling magnets. In our experiments, we arrange a lattice in a hexagonal configuration with a light-mass defect, and we harmonically drive the center of the chain with a tunable excitation frequency, amplitude, and angle. We use a damped, driven variant of a vector Fermi–Pasta–Ulam–Tsingou lattice to model our experimental setup. Despite the idealized nature of this model, we obtain good qualitative agreement between theory and experiments for a variety of dynamical behaviors. We find that the spatial decay is direction-dependent and that drive amplitudes along fundamental displacement axes lead to nonlinear resonant peaks in frequency continuations that are similar to those that occur in one-dimensional damped, driven lattices. However, we observe numerically that driving along other directions results in asymmetric NLMs that bifurcate from the main solution branch, which consists of symmetric NLMs. We also demonstrate both experimentally and numerically that solutions that appear to be time-quasiperiodic bifurcate from the branch of symmetric time-periodic NLMs.more » « less
-
Calculation of many-body correlation functions is one of the critical kernels utilized in many scientific computing areas, especially in Lattice Quantum Chromodynamics (Lattice QCD). It is formalized as a sum of a large number of contraction terms each of which can be represented by a graph consisting of vertices describing quarks inside a hadron node and edges designating quark propagations at specific time intervals. Due to its computation- and memory-intensive nature, real-world physics systems (e.g., multi-meson or multi-baryon systems) explored by Lattice QCD prefer to leverage multi-GPUs. Different from general graph processing, many-body correlation function calculations show two specific features: a large number of computation-/data-intensive kernels and frequently repeated appearances of original and intermediate data. The former results in expensive memory operations such as tensor movements and evictions. The latter offers data reuse opportunities to mitigate the data-intensive nature of many-body correlation function calculations. However, existing graph-based multi-GPU schedulers cannot capture these data-centric features, thus resulting in a sub-optimal performance for many-body correlation function calculations. To address this issue, this paper presents a multi-GPU scheduling framework, MICCO, to accelerate contractions for correlation functions particularly by taking the data dimension (e.g., data reuse and data eviction) into account. This work first performs a comprehensive study on the interplay of data reuse and load balance, and designs two new concepts: local reuse pattern and reuse bound to study the opportunity of achieving the optimal trade-off between them. Based on this study, MICCO proposes a heuristic scheduling algorithm and a machine-learning-based regression model to generate the optimal setting of reuse bounds. Specifically, MICCO is integrated into a real-world Lattice QCD system, Redstar, for the first time running on multiple GPUs. The evaluation demonstrates MICCO outperforms other state-of-art works, achieving up to 2.25× speedup in synthesized datasets, and 1.49× speedup in real-world correlation functions.more » « less
-
Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.more » « less
An official website of the United States government

