skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data from: Forest carbon emission sources are not equal: putting fire, harvest, and fossil fuel emissions in context
Climate change has intensified the scale of global wildfire impacts in recent decades. To help policymakers and managers avoid these unintended carbon consequences and to present carbon emission sources in the same context, we calculate western US forest fire carbon emissions and compare them with harvest and fossil fuel emissions over the same timeframe. We find that forest fire carbon emissions are on average only 6% of anthropogenic fossil fuel emissions (FFE) over the past decade. While wildfire occurrence and area burned have increased over the last three decades, per area fire emissions for extreme fire events are relatively constant. In contrast, harvest of mature trees releases a higher density of carbon emissions (e.g., per unit area) relative to wildfire (150-800%) because harvest causes a higher rate of tree mortality than wildfire. Shown in context, our results demonstrate that reducing FFEs will do more for climate mitigation potential (and subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions.  more » « less
Award ID(s):
1655183
PAR ID:
10357635
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
University of Idaho
Date Published:
Subject(s) / Keyword(s):
FOS: Biological sciences FOS: Agriculture, forestry, and fisheries
Format(s):
Medium: X Size: 62.8 MB Other: csv; txt
Size(s):
62.8 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate change has intensified the scale of global wildfire impacts in recent decades. In order to reduce fire impacts, management policies are being proposed in the western United States to lower fire risk that focus on harvesting trees, including large-diameter trees. Many policies already do not include diameter limits and some recent policies have proposed diameter increases in fuel reduction strategies. While the primary goal is fire risk reduction, these policies have been interpreted as strategies that can be used to save trees from being killed by fire, thus preventing carbon emissions and feedbacks to climate warming. This interpretation has already resulted in cutting down trees that likely would have survived fire, resulting in forest carbon losses that are greater than if a wildfire had occurred. To help policymakers and managers avoid these unintended carbon consequences and to present carbon emission sources in the same context, we calculate western United States forest fire carbon emissions and compare them with harvest and fossil fuel emissions (FFE) over the same timeframe. We find that forest fire carbon emissions are on average only 6% of anthropogenic FFE over the past decade. While wildfire occurrence and area burned have increased over the last three decades, per area fire emissions for extreme fire events are relatively constant. In contrast, harvest of mature trees releases a higher density of carbon emissions (e.g., per unit area) relative to wildfire (150–800%) because harvest causes a higher rate of tree mortality than wildfire. Our results show that increasing harvest of mature trees to save them from fire increases emissions rather than preventing them. Shown in context, our results demonstrate that reducing FFEs will do more for climate mitigation potential (and subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions. On public lands, management aimed at less-intensive fuels reduction (such as removal of “ladder” fuels, i.e., shrubs and small-diameter trees) will help to balance reducing catastrophic fire and leave live mature trees on the landscape to continue carbon uptake. 
    more » « less
  2. Abstract Wildfire is an essential earth‐system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO2) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed. This misconception is also reflected though excessive combustion of live trees in models. Here, we show that regional emissions estimates using widely implemented combustion coefficients are 59%–83% higher than emissions based on field observations. Using unique field datasets from before and after wildfires and an improved ecosystem model, we provide strong evidence that these large overestimates can be reduced by using realistic biomass combustion factors and by accurately quantifying biomass in standing dead trees that decompose over decades to centuries after fire (“snags”). Most model development focuses on area burned; our results reveal that accurately representing combustion is also essential for quantifying fire impacts on ecosystems. Using our improvements, we find that western US forest fires have emitted 851 ± 228 Tg CO2(~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg CO2from fossil fuels across the region. 
    more » « less
  3. Warming temperatures and prolonged drought periods cause rapid changes of fire frequencies and intensities in high-latitude ecosystems. Associated smoke plumes deposit dark particles from incomplete combustion on the Greenland ice sheet that reduce albedo but also provide a detailed record of paleofire history. Here, we apply an emerging microscopic charcoal technique in combination with established black carbon and lead pollution measurements to an array of 10 ice cores from southern to central Greenland that span recent decades. We found that microscopic charcoal deposition is highly variable among sites, with a few records suggesting recently increasing biomass burning possibly in response to growing fire activity in boreal forest ecosystems. This stands in contrast to decreasing trends in black carbon measured in the same ice cores, consistent with contributions from industrial fossil fuel emissions. Decreasing trends of lead pollution and occurrence of microscopic spheroidal carbonaceous particles (SCP), a microfossil tracer of fossil fuel emissions, further support our interpretation that black carbon in this region is influenced by industrial emissions during recent decades. We conclude that microscopic charcoal analyses in ice may help disentangle biomass burning from fossil-fuel emissions during the industrial period and have potential to contribute to better understanding of regional high-latitude fire regimes. 
    more » « less
  4. Over the past several decades, the annual burned area in California's Sierra Nevada mountains has increased considerably, with significant social, economic, and ecosystem impacts that provide motivation for understanding how the history of forest management influences the composition of fuels and emissions in wildfires. Here, we measured the carbon concentration and radiocarbon abundance (∆14C) of fire-emitted particulate matter from the KNP Complex Fire, which burned through several groves of giant sequoia trees in the southern Sierra Nevada mountains during California’s 2021 wildfire season. Over a 26-hour sampling period, we measured the concentration of fine airborne particulate matter (PM2.5) along with carbon monoxide (CO) and methane (CH4) dry air mole fractions using a ground-based mobile laboratory. Filter samples of PM2.5 were also collected and later analyzed for carbon concentration and ∆14C. Covariation of PM2.5, CO, and CH4 time series data confirmed that our PM2.5 samples were representative of wildfire emissions. Using a Keeling plot approach, we estimated that the mean ∆14C of PM2.5 was 111.5 ± 2.3‰ (n=12), which is considerably enriched relative to that of atmospheric carbon dioxide in the northern hemisphere in 2021 (-3.4 ± 1.4‰). By combining these ∆14C data with a steady-state one-box ecosystem model, we estimated that the mean age of fuels combusted in the KNP Complex Fire was 40 ± 6 years. This multi-decadal fuel age provides evidence for emissions from woody biomass, coarse woody debris, and larger-diameter fine fuels. The combustion of these larger-size fuel classes is consistent with independent field observations that indicate high fire intensity contributed to widespread giant sequoia mortality. With the expanded use of prescribed fires planned over the next decade in California to mitigate impacts of wildfires, our measurement approach has the potential to provide regionally-integrated estimates of the effectiveness of fuel treatment programs. 
    more » « less
  5. Abstract In recent decades, there has been a significant increase in annual area burned in California’s Sierra Nevada mountains. This rise in fire activity has prompted the need to understand how historical forest management practices affect fuel composition and emissions. Here we examined the total carbon (TC) concentration and radiocarbon abundance (Δ 14 C) of particulate matter (PM) emitted by the KNP Complex Fire, which occurred during California’s 2021 wildfire season and affected several groves of giant sequoia trees in the southern Sierra Nevada. During a 26 h sampling period, we measured concentrations of fine airborne PM (PM 2.5 ), as well as dry air mole fractions of carbon monoxide (CO) and methane (CH 4 ), using a ground-based mobile laboratory. We also collected filter samples of PM 2.5 for analysis of TC concentration and Δ 14 C. High correlation among PM 2.5 , CO, and CH 4 time series confirmed that our PM 2.5 measurements captured variability in wildfire emissions. Using a Keeling plot approach, we determined that the mean Δ 14 C of PM 2.5 was 111.6 ± 7.7‰ ( n = 12), which was considerably enriched relative to atmospheric carbon dioxide in the northern hemisphere in 2021 (−3.2 ± 1.4‰). Combining these Δ 14 C data with a steady-state one-box ecosystem model, we estimated that the mean age of fuels combusted in the KNP Complex Fire was 40 years, with a range of 29–57 years. These results provide evidence for emissions originating from woody biomass, larger-diameter fine fuels, and coarse woody debris that have accumulated over multiple decades. This is consistent with independent field observations that indicate high fire intensity contributed to widespread giant sequoia mortality. With the expanded use of prescribed fires planned over the next decade in California to mitigate wildfire impacts, our measurement approach has the potential to provide regionally-integrated estimates of the effectiveness of fuel treatment programs. 
    more » « less