skip to main content


Title: Learning Optimal Controllers by Policy Gradient: Global Optimality via Convex Parameterization
Common reinforcement learning methods seek optimal controllers for unknown dynamical systems by searching in the "policy" space directly. A recent line of research, starting with [1], aims to provide theoretical guarantees for such direct policy-update methods by exploring their performance in classical control settings, such as the infinite horizon linear quadratic regulator (LQR) problem. A key property these analyses rely on is that the LQR cost function satisfies the "gradient dominance" property with respect to the policy parameters. Gradient dominance helps guarantee that the optimal controller can be found by running gradient-based algorithms on the LQR cost. The gradient dominance property has so far been verified on a case-by-case basis for several control problems including continuous/discrete time LQR, LQR with decentralized controller, H2/H∞ robust control.In this paper, we make a connection between this line of work and classical convex parameterizations based on linear matrix inequalities (LMIs). Using this, we propose a unified framework for showing that gradient dominance indeed holds for a broad class of control problems, such as continuous- and discrete-time LQR, minimizing the L2 gain, and problems using system-level parameterization. Our unified framework provides insights into the landscape of the cost function as a function of the policy, and enables extending convergence results for policy gradient descent to a much larger class of problems.  more » « less
Award ID(s):
2023166
NSF-PAR ID:
10349167
Author(s) / Creator(s):
;
Date Published:
Journal Name:
60th IEEE Conference on Decision and Control (CDC),
Page Range / eLocation ID:
4576 to 4581
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep reinforcement learning approaches are becoming appealing for the design of nonlinear controllers for voltage control problems, but the lack of stability guarantees hinders their real-world deployment. This letter constructs a decentralized RL-based controller for inverter-based real-time voltage control in distribution systems. It features two components: a transient control policy and a steady-state performance optimizer. The transient policy is parameterized as a neural network, and the steady-state optimizer represents the gradient of the long-term operating cost function. The two parts are synthesized through a safe gradient flow framework, which prevents the violation of reactive power capacity constraints. We prove that if the output of the transient controller is bounded and monotonically decreasing with respect to its input, then the closed-loop system is asymptotically stable and converges to the optimal steady-state solution. We demonstrate the effectiveness of our method by conducting experiments with IEEE 13-bus and 123-bus distribution system test feeders. 
    more » « less
  2. We study the problem of policy evaluation and learning from batched contextual bandit data when treatments are continuous, going beyond previous work on discrete treatments. Previous work for discrete treatment/action spaces focuses on inverse probability weighting (IPW) and doubly robust (DR) methods that use a rejection sampling approach for evaluation and the equivalent weighted classification problem for learning. In the continuous setting, this reduction fails as we would almost surely reject all observations. To tackle the case of continuous treatments, we extend the IPW and DR approaches to the continuous setting using a kernel function that leverages treatment proximity to attenuate discrete rejection. Our policy estimator is consistent and we characterize the optimal bandwidth. The resulting continuous policy optimizer (CPO) approach using our estimator achieves convergent regret and approaches the best-in-class policy for learnable policy classes. We demonstrate that the estimator performs well and, in particular, outperforms a discretization-based benchmark. We further study the performance of our policy optimizer in a case study on personalized dosing based on a dataset of Warfarin patients, their covariates, and final therapeutic doses. Our learned policy outperforms benchmarks and nears the oracle-best linear policy. 
    more » « less
  3. Gradient-based methods have been widely used for system design and optimization in diverse application domains. Recently, there has been a renewed interest in studying theoretical properties of these methods in the context of control and reinforcement learning. This article surveys some of the recent developments on policy optimization, a gradient-based iterative approach for feedback control synthesis that has been popularized by successes of reinforcement learning. We take an interdisciplinary perspective in our exposition that connects control theory, reinforcement learning, and large-scale optimization. We review a number of recently developed theoretical results on the optimization landscape, global convergence, and sample complexityof gradient-based methods for various continuous control problems, such as the linear quadratic regulator (LQR), [Formula: see text] control, risk-sensitive control, linear quadratic Gaussian (LQG) control, and output feedback synthesis. In conjunction with these optimization results, we also discuss how direct policy optimization handles stability and robustness concerns in learning-based control, two main desiderata in control engineering. We conclude the survey by pointing out several challenges and opportunities at the intersection of learning and control. 
    more » « less
  4. In this thesis we propose novel estimation techniques for localization and planning problems, which are key challenges in long-term autonomy. We take inspiration in our methods from non-parametric estimation and use tools such as kernel density estimation, non-linear least-squares optimization, binary masking, and random sampling. We show that these methods, by avoiding explicit parametric models, outperform existing methods that use them. Despite the seeming differences between localization and planning, we demonstrate in this thesis that the problems share core structural similarities. When real or simulation-sampled measurements are expensive, noisy, or high variance, non-parametric estimation techniques give higher-quality results in less time. We first address two localization problems. In order to permit localization with a set of ad hoc-placed radios, we propose an ultra-wideband (UWB) graph realization system to localize the radios. Our system achieves high accuracy and robustness by using kernel density estimation for measurement probability densities, by explicitly modeling antenna delays, and by optimizing this combination with a non-linear least squares formulation. Next, in order to then support robotic navigation, we present a flexible system for simultaneous localization and mapping (SLAM) that combines elements from both traditional dense metric SLAM and topological SLAM, using a binary "masking function" to focus attention. This masking function controls which lidar scans are available for loop closures. We provide several masking functions based on approximate topological class detectors. We then examine planning problems in the final chapter and in the appendix. In order to plan with uncertainty around multiple dynamic agents, we describe Monte-Carlo Policy-Tree Decision Making (MCPTDM), a framework for efficiently computing policies in partially-observable, stochastic, continuous problems. MCPTDM composes a sequence of simpler closed-loop policies and uses marginal action costs and particle repetition to improve cost estimates and sample efficiency by reducing variance. Finally, in the appendix we explore Learned Similarity Monte-Carlo Planning (LSMCP), where we seek to enhance the sample efficiency of partially observable Monte Carlo tree search-based planning by taking advantage of similarities in the final outcomes of similar states and actions. We train a multilayer perceptron to learn a similarity function which we then use to enhance value estimates in the planning. Collectively, we show in this thesis that non-parametric methods promote long-term autonomy by reducing error and increasing robustness across multiple domains. 
    more » « less
  5. We investigate reinforcement learning for mean field control problems in discrete time, which can be viewed as Markov decision processes for a large number of exchangeable agents interacting in a mean field manner. Such problems arise, for instance when a large number of robots communicate through a central unit dispatching the optimal policy computed by minimizing the overall social cost. An approximate solution is obtained by learning the optimal policy of a generic agent interacting with the statistical distribution of the states of the other agents. We prove rigorously the convergence of exact and model-free policy gradient methods in a mean-field linear-quadratic setting. We also provide graphical evidence of the convergence based on implementations of our algorithms. 
    more » « less