skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data report: in situ elastic properties of hydrothermally altered volcanic rocks, IODP Expedition 376, Brothers volcano, Kermadec arc
Cores and downhole measurements recovered during International Ocean Discovery Program (IODP) Expedition 376 to Brothers volcano in the Kermadec arc provided unprecedented in situ data in an active submarine arc caldera with extensive hydrothermal alteration. Pressure (P)-wave velocities were measured on the R/V JOIDES Resolution at atmospheric pressures and saturated with seawater. To complement these shipboard measurements, seven new samples were selected representing various primary lithologic and alteration mineralogic compositions in the three deepest holes (U1527C, U1528D, and U1530A) for further shore-based laboratory testing. P- and shear (S)-wave velocities and porosity were measured on seven samples at atmospheric pressure and dry conditions. In addition, P- and S-wave velocities of two of these samples were measured under effective pressure dry and brine saturated. Such data aids in situ porosity, saturation, and pressure sensitivity elastic data interpretation from downhole measurements acquired in Hole U1530A. The clear waveforms obtained and overall similarities to measurements from the nearest shipboard samples ensure that the results are reliable at atmospheric pressures. All shore-based samples have higher porosity than shipboard samples. This difference could be explained by gas- versus water-connected porosity. The two saturated samples measured at effective pressures of the borehole sample depths show that P-wave speeds are 13%–20% higher than the ship atmospheric pressure measurements. The pressure dependence of wave speeds also enables the qualitative interpretation of pore shapes for these submarine, hydrothermally altered rocks.  more » « less
Award ID(s):
1326927
PAR ID:
10349188
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program
Volume:
376
Issue:
201
ISSN:
2377-3189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this data report, we present postcruise petrophysical measurement results for Hole U1513E. During International Ocean Discovery Program (IODP) Expedition 369, five holes were drilled at Site U1513 on the Naturaliste Plateau offshore southwest Australia. The last and deepest hole, U1513E, recovered a volcanic sequence (Lithostratigraphic Unit VI) consisting of basalt flows, dolerite dikes, and volcaniclastic beds. Because of time constraints, moisture and density (MAD) measurements were not possible on board for Hole U1513E. To obtain bulk (wet), dry, and grain density and porosity data, we performed the MAD analysis on 25 core samples collected from Hole U1513E after the expedition. Among these samples, five were selected to measure ultrasonic velocity and dynamic Poisson’s ratio. Six additional samples from Hole U1513D were analyzed to compare with shipboard data to validate the postcruise measurements. The results are compatible with shipboard data in individual lithologic units. Samples of relatively fresh rocks show bulk and dry density values near 2.5 g/cm3 and porosity near 10%, whereas altered basalts and volcaniclastics exhibit lower values of bulk and dry density and higher values of porosity. Grain density varies between 2.6 and 3.3 g/cm3. S-wave velocity ranges from 934 to 3135 m/s, which accompanies variable dynamic Poisson’s ratio between 0.1 and 0.35. 
    more » « less
  2. Abstract This work tests a methodology for estimating the ocean stratification gradient using remotely sensed, high temporal and spatial resolution field measurements of internal wave propagation speeds. The internal wave (IW) speeds were calculated from IW tracks observed using a shore-based, X-band marine radar deployed at a field site on the south-central coast of California. An inverse model, based on the work of Kar and Guha, utilizes the linear internal wave dispersion relation, assuming a constant vertical density gradient is the basis for the inverse model. This allows the vertical gradient of density to be expressed as a function of the internal wave phase speed, local water depth, and a background average density. The inputs to the algorithm are the known cross-shore bathymetry, the background ocean density, and the remotely sensed cross-shore profiles of IW speed. The estimated density gradients are then compared to the synchronously measured vertical density profiles collected from an in situ instrument array. The results show a very good agreement offshore in deeper water (∼50–30 m) but more significant discrepancies in shallow water (20–10 m) closer to shore. In addition, a sensitivity analysis is conducted that relates errors in measured speeds to errors in the estimated density gradients. Significance StatementThe propagation speed of ocean internal waves inherently depends on the vertical structure of the water density, which is termed stratification. In this work, we evaluate and test with real field observations a technique to infer the ocean density stratification from internal wave propagation speeds collected from remote sensing images. Such methods offer a way to monitor ocean stratification without the need for extensive in situ measurements. 
    more » « less
  3. This chapter documents the methods used for shipboard measurements and analyses during International Ocean Discovery Program (IODP) Expedition 358. We conducted riser drilling from 2887.3 to 3262.5 meters below seafloor (mbsf) at Site C0002 (see Table T1 in the Expedition 358 summary chapter [Tobin et al., 2020a]) as a continuation of riser drilling in Hole C0002F begun during Integrated Ocean Drilling Program Expedition 326 (Expedition 326 Scientists, 2011) and deepened during Integrated Ocean Drilling Program Expeditions 338 and 348 (Strasser et al., 2014b; Tobin et al., 2015b). Please note that the top of Hole C0002Q begins from the top of the window cut into the Hole C0002P casing. Previous Integrated Ocean Drilling Program work at Site C0002 included logging and coring during Integrated Ocean Drilling Program Expeditions 314 (logging while drilling [LWD]), 315 (riserless coring), 332 (LWD and long-term monitoring observatory installation), 338 (riser drilling and riserless coring), and 348 (riser drilling) (Expedition 314 Scientists, 2009; Expedition 315 Scientists, 2009b; Expedition 332 Scientists, 2011; Strasser et al., 2014b; Tobin et al., 2015b). Riserless contingency drilling was also conducted at Site C0024 (LWD and coring) near the deformation front of the Nankai accretionary prism off the Kii Peninsula and at Site C0025 (coring only) in the Kumano fore-arc basin. Riser operations began with connection of the riser to the Hole C0002F wellhead, sidetrack drilling out the cement shoes from 2798 to 2966 mbsf to establish a new hole, and then running a cement bond log to check the integrity of the Hole C0002P casing-formation bonding. A new sidetrack was established parallel to previous Hole C0002P drilling and designated as Hole C0002Q to distinguish it from the overlapping interval in Hole C0002P. Several new kick offs were established (Holes C0002R–C0002T) in attempts to overcome problems drilling to the target depth and then, in the end, to collect core samples. During riser operations, we collected drilling mud, mud gas, cuttings, downhole logs, core samples, and drilling parameters (including mud flow rate, weight on bit [WOB], torque on bit, and downhole pressure, among others). Gas from drilling mud was analyzed in near–real time in a special mud-gas monitoring laboratory (MGML) and was sampled for further postcruise research. Continuous LWD data were transmitted on board and displayed in real time for QC and for initial assessment of borehole environment and formation properties. Recorded-mode LWD data provided higher spatial sampling of downhole parameters and conditions. Cuttings were sampled for standard shipboard analyses and shore-based research. Small-diameter rotary core barrel (SD-RCB; 8½ inch) coring in Hole C0002T provided only minimal core. Riserless coring at Sites C0024 and C0025 with a 10⅝ inch rotary core barrel (RCB) and hydraulic piston coring system (HPCS)/extended punch coring system (EPCS)/extended shoe coring system (ESCS) bottom-hole assembly (BHA) provided most of the core used for standard shipboard and shore-based research. 
    more » « less
  4. We report laboratory measurements of thermal conductivity and thermal diffusivity and calculated values of volumetric heat capacity for 56 core samples collected during International Ocean Discovery Program Expedition 375 from Sites U1518 and U1519 in the Hikurangi subduction zone. These sites are instrumented with borehole observatories that include downhole temperature sensors, enabling eventual integration of laboratory-derived thermal properties with in situ thermal data. Measurements were conducted under saturated conditions using a transient plane source technique and include repeated tests for quality control. Volumetric heat capacity was calculated as the ratio of thermal conductivity to thermal diffusivity, using measurements obtained simultaneously on the same sample. At Site U1518, thermal diffusivity averages 5.055 ± 0.610 × 10−7 m2/s (± one standard deviation) and volumetric heat capacity averages 2.588 ± 0.277 MJ/(m3·K). At Site U1519, thermal diffusivity averages 5.395 ± 1.027 × 10−7 m2/s and volumetric heat capacity averages 2.574 ± 0.350 MJ/(m3·K). Measured thermal conductivity values average 1.294 ± 0.123 W/(m·K) at Site U1518 and 1.354 ± 0.131 W/(m·K) at Site U1519 and are consistent with previous shipboard results. These new constraints on thermal properties provide key input for interpreting borehole temperature records and modeling transient heat transport in subduction zone fault systems. 
    more » « less
  5. Wave-orbital velocities are estimated with particle image velocimetry (PIV) applied to rapid sequences of images of the surfzone surface obtained with a low-cost camera mounted on an amphibious tripod. Time series and spectra of the remotely sensed cross-shore wave-orbital velocities are converted to the depth of colocated acoustic Doppler velocimeters (ADVs), using linear finite depth theory. These converted velocities are similar to the velocities measured in situ (mean nRMSE for time series =16% and for spectra =10%). Small discrepancies between depth-attenuated surface and in situ currents may be owing to errors in the surface velocity measurements, uncertainties in the water depth, the vertical elevation of the ADVs, and the neglect of nonlinear effects when using linear finite depth theory. These results show the potential to obtain spatially dense estimates of wave velocities 
    more » « less