skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating the In Situ Stratification via Remotely Sensed Internal Wave Speeds
Abstract This work tests a methodology for estimating the ocean stratification gradient using remotely sensed, high temporal and spatial resolution field measurements of internal wave propagation speeds. The internal wave (IW) speeds were calculated from IW tracks observed using a shore-based, X-band marine radar deployed at a field site on the south-central coast of California. An inverse model, based on the work of Kar and Guha, utilizes the linear internal wave dispersion relation, assuming a constant vertical density gradient is the basis for the inverse model. This allows the vertical gradient of density to be expressed as a function of the internal wave phase speed, local water depth, and a background average density. The inputs to the algorithm are the known cross-shore bathymetry, the background ocean density, and the remotely sensed cross-shore profiles of IW speed. The estimated density gradients are then compared to the synchronously measured vertical density profiles collected from an in situ instrument array. The results show a very good agreement offshore in deeper water (∼50–30 m) but more significant discrepancies in shallow water (20–10 m) closer to shore. In addition, a sensitivity analysis is conducted that relates errors in measured speeds to errors in the estimated density gradients. Significance StatementThe propagation speed of ocean internal waves inherently depends on the vertical structure of the water density, which is termed stratification. In this work, we evaluate and test with real field observations a technique to infer the ocean density stratification from internal wave propagation speeds collected from remote sensing images. Such methods offer a way to monitor ocean stratification without the need for extensive in situ measurements.  more » « less
Award ID(s):
2220439
PAR ID:
10549688
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
41
Issue:
10
ISSN:
0739-0572
Format(s):
Medium: X Size: p. 991-1001
Size(s):
p. 991-1001
Sponsoring Org:
National Science Foundation
More Like this
  1. Wave-orbital velocities are estimated with particle image velocimetry (PIV) applied to rapid sequences of images of the surfzone surface obtained with a low-cost camera mounted on an amphibious tripod. Time series and spectra of the remotely sensed cross-shore wave-orbital velocities are converted to the depth of colocated acoustic Doppler velocimeters (ADVs), using linear finite depth theory. These converted velocities are similar to the velocities measured in situ (mean nRMSE for time series =16% and for spectra =10%). Small discrepancies between depth-attenuated surface and in situ currents may be owing to errors in the surface velocity measurements, uncertainties in the water depth, the vertical elevation of the ADVs, and the neglect of nonlinear effects when using linear finite depth theory. These results show the potential to obtain spatially dense estimates of wave velocities 
    more » « less
  2. Abstract The Arctic climate is changing rapidly, with dramatic sea ice declines and increasing upper‐ocean heat content. While oceanic heat has historically been isolated from the sea ice by weak vertical mixing, it has been hypothesized that a reduced ice pack will increase energy transfer from the wind into the internal wave (IW) field, enhancing mixing and accelerating ice melt. We evaluate this positive ice/internal‐wave feedback using a finescale parameterization to estimate dissipation, a proxy for the energy available for IW‐driven mixing, from pan‐Arctic hydrographic profiles over 18 years. We find that dissipation has nearly doubled in summer in some regions. Associated heat fluxes have risen by an order of magnitude, underpinned by increases in the strength and prevalence of IW‐driven mixing. While the impact of the ice/internal‐wave feedback will likely remain negligible in the western Arctic, sea‐ice melt in the eastern Arctic appears vulnerable to the feedback strengthening. 
    more » « less
  3. Abstract Currents transport sediment, larvae, pollutants, and people across and along the surfzone, creating a dynamic interface between the coastal ocean and shore. Previous field studies of nearshore flows primarily have relied on relatively low spatial resolution deployments of in situ sensors, but the development of remote sensing techniques using optical imagery and naturally occurring foam as a flow tracer has allowed for high spatial resolution observations (on the order of a few meters) across the surfzone. Here, algorithms optical current meter (OCM) and particle image velocimetry (PIV) are extended from previous surfzone applications and used to estimate both cross-shore and alongshore 2-, 10-, and 60-min mean surface currents in the nearshore using imagery from both oblique and nadir viewing angles. Results are compared with in situ current meters throughout the surfzone for a wide range of incident wave heights, directions, and directional spreads. Differences between remotely sensed flows and in situ current meters are smallest for nadir viewing angles, where georectification is simplified. Comparisons of 10-min mean flow estimates from a nadir viewing angle with in situ estimates of alongshore and cross-shore currents had correlationsr2= 0.94 and 0.51 with root-mean-square differences (RMSDs) = 0.07 and 0.16 m s−1for PIV andr2= 0.88 and 0.44 with RMSDs = 0.08 and 0.22 m s−1for OCM. Differences between remotely sensed and in situ cross-shore current estimates are at least partially owing to the difference between onshore-directed mass flux on the surface and offshore-directed undertow in the mid–water column. 
    more » « less
  4. Abstract The ocean is home to many different submesoscale phenomena, including internal waves, fronts, and gravity currents. Each of these processes entail complex nonlinear dynamics, even in isolation. Here we present shipboard, moored, and remote observations of a submesoscale gravity current front created by a shoaling internal tidal bore in the coastal ocean. The internal bore is observed to flatten as it shoals, leaving behind a gravity current front that propagates significantly slower than the bore. We posit that the generation and separation of the front from the bore is related to particular stratification ahead of the bore, which allows the bore to reach the maximum possible internal wave speed. After the front is calved from the bore, it is observed to propagate as a gravity current for ≈4 hours, with associated elevated turbulent dissipation rates. A strong cross-shore gradient of along-shore velocity creates enhanced vertical vorticity (Rossby number ≈ 40) that remains locked with the front. Lateral shear instabilities develop along the front and may hasten its demise. 
    more » « less
  5. Abstract Shoaling internal solitary waves (ISWs) were observed at three mooring sites on the upper continental slope in the northern South China Sea over a period of 5–11 months at water depths of 600, 430, and 350 m. Their properties exhibit a fortnightly variation because of their origination from internal tides. ISW amplitudes, current speeds, and propagation speeds are greater and wave widths narrower in summer than in winter, consistent with the effect of increased stratification in summer, as confirmed by Dubreil‐Jacotin‐Long (DJL) solutions. As ISWs propagate up the slope, the differential response of current and propagation speeds to bottom topography provides an opportunity for convective breaking of ISWs. Convective breaking occurs mostly between 430 and 600‐m depths and exhibits a marginal convective instability status such that (a) the maximum current speed remains nearly equal to the propagation speed and (b) for large‐amplitude waves the current speed and propagation speed decrease at nearly the same rate between 600 and 430‐m depths. The marginal convective instability occurs because ISWs adjust gradually to the gently sloping bottom and preserve their structural integrity after the onset of breaking. Vertical velocity variances behind the leading ISWs, which serve as a surrogate for the number of trailing waves, increase when ISWs reach the convective breaking limit, suggesting that convective breaking may accelerate the fission process in leading ISWs or that convective breaking is accompanied by an enhanced nonlinear dispersion of waves trailing ISWs generated by internal tides. 
    more » « less