Accuracy in the prediction of protein structures is key in understanding the biological functions of different proteins. Numerous measures of similarity tools for protein structures have been developed over the years, and these include Root Mean Square Deviation (RMSD), as well as Template Modeling Score (TM-score). While RMSD is influenced by the length of the protein and therefore the similarity between superimposed models can be affected by divergent loops in the models, TM-score is rather a robust and a more accurate method. TM-score, however, is much slower than RMSD in terms of calculations for the optimal superimposed model. Here, we present initial optimization work on GPU-TM-score, a GPU accelerated Template Modeling Score for fast and accurate measuring of similarity between protein structures. Our optimization is based on OpenACC parallelization and performance analysis of bottleneck regions and the KABSCH algorithm for the calculation of optimal superimposition within parallel architectures. Our initial results indicate an average 3.14× speedup compared to original TM-score on a benchmark set of 20 protein structures. This speedup is recorded on an Nvidia Volta V100 GPU compared to an AMD EPYC 7742 64-core processor.
more »
« less
Benchmarking the Accuracy of AlphaFold 2 in Loop Structure Prediction
The inhibition of protein–protein interactions is a growing strategy in drug development. In addition to structured regions, many protein loop regions are involved in protein–protein interactions and thus have been identified as potential drug targets. To effectively target such regions, protein structure is critical. Loop structure prediction is a challenging subgroup in the field of protein structure prediction because of the reduced level of conservation in protein sequences compared to the secondary structure elements. AlphaFold 2 has been suggested to be one of the greatest achievements in the field of protein structure prediction. The AlphaFold 2 predicted protein structures near the X-ray resolution in the Critical Assessment of protein Structure Prediction (CASP 14) competition in 2020. The purpose of this work is to survey the performance of AlphaFold 2 in specifically predicting protein loop regions. We have constructed an independent dataset of 31,650 loop regions from 2613 proteins (deposited after the AlphaFold 2 was trained) with both experimentally determined structures and AlphaFold 2 predicted structures. With extensive evaluation using our dataset, the results indicate that AlphaFold 2 is a good predictor of the structure of loop regions, especially for short loop regions. Loops less than 10 residues in length have an average Root Mean Square Deviation (RMSD) of 0.33 Å and an average the Template Modeling score (TM-score) of 0.82. However, we see that as the number of residues in a given loop increases, the accuracy of AlphaFold 2’s prediction decreases. Loops more than 20 residues in length have an average RMSD of 2.04 Å and an average TM-score of 0.55. Such a correlation between accuracy and length of the loop is directly linked to the increase in flexibility. Moreover, AlphaFold 2 does slightly over-predict α-helices and β-strands in proteins.
more »
« less
- Award ID(s):
- 2137558
- PAR ID:
- 10349231
- Date Published:
- Journal Name:
- Biomolecules
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2218-273X
- Page Range / eLocation ID:
- 985
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MotivationProteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery. ResultsIn this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures. Availability and implementationThe source code, data, and pre-trained models are available at https://github.com/jianlin-cheng/DProQA.more » « less
-
Abstract Mutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases and develop therapeutics against them. With improved deep learning techniques, such as RoseTTAFold and AlphaFold, we can predict the structure of proteins even in the absence of structural homologs. We modeled and extracted the domains from 553 disease-associated human proteins without known protein structures or close homologs in the Protein Databank. We noticed that the model quality was higher and the Root mean square deviation (RMSD) lower between AlphaFold and RoseTTAFold models for domains that could be assigned to CATH families as compared to those which could only be assigned to Pfam families of unknown structure or could not be assigned to either. We predicted ligand-binding sites, protein–protein interfaces and conserved residues in these predicted structures. We then explored whether the disease-associated missense mutations were in the proximity of these predicted functional sites, whether they destabilized the protein structure based on ddG calculations or whether they were predicted to be pathogenic. We could explain 80% of these disease-associated mutations based on proximity to functional sites, structural destabilization or pathogenicity. When compared to polymorphisms, a larger percentage of disease-associated missense mutations were buried, closer to predicted functional sites, predicted as destabilizing and pathogenic. Usage of models from the two state-of-the-art techniques provide better confidence in our predictions, and we explain 93 additional mutations based on RoseTTAFold models which could not be explained based solely on AlphaFold models.more » « less
-
null (Ed.)Information about macromolecular structure of protein complexes and related cellular and molecular mechanisms can assist the search for vaccines and drug development processes. To obtain such structural information, we present DeepTracer, a fully automated deep learning-based method for fast de novo multichain protein complex structure determination from high-resolution cryoelectron microscopy (cryo-EM) maps. We applied DeepTracer on a previously published set of 476 raw experimental cryo-EM maps and compared the results with a current state of the art method. The residue coverage increased by over 30% using DeepTracer, and the rmsd value improved from 1.29 Å to 1.18 Å. Additionally, we applied DeepTracer on a set of 62 coronavirus-related cryo-EM maps, among them 10 with no deposited structure available in EMDataResource. We observed an average residue match of 84% with the deposited structures and an average rmsd of 0.93 Å. Additional tests with related methods further exemplify DeepTracer’s competitive accuracy and efficiency of structure modeling. DeepTracer allows for exceptionally fast computations, making it possible to trace around 60,000 residues in 350 chains within only 2 h. The web service is globally accessible at https://deeptracer.uw.edu .more » « less
-
Dunbrack, Roland L (Ed.)Protein structure prediction has now been deployed widely across several different large protein sets. Large-scale domain annotation of these predictions can aid in the development of biological insights. Using our Evolutionary Classification of Protein Domains (ECOD) from experimental structures as a basis for classification, we describe the detection and cataloging of domains from 48 whole proteomes deposited in the AlphaFold Database. On average, we can provide positive classification (either of domains or other identifiable non-domain regions) for 90% of residues in all proteomes. We classified 746,349 domains from 536,808 proteins comprised of over 226,424,000 amino acid residues. We examine the varying populations of homologous groups in both eukaryotes and bacteria. In addition to containing a higher fraction of disordered regions and unassigned domains, eukaryotes show a higher proportion of repeated proteins, both globular and small repeats. We enumerate those highly populated domains that are shared in both eukaryotes and bacteria, such as the Rossmann domains, TIM barrels, and P-loop domains. Additionally, we compare the sampling of homologous groups from this whole proteome set against our stable ECOD reference and discuss groups that have been enriched by structure predictions. Finally, we discuss the implication of these results for protein target selection for future classification strategies for very large protein sets.more » « less
An official website of the United States government

