The inhibition of protein–protein interactions is a growing strategy in drug development. In addition to structured regions, many protein loop regions are involved in protein–protein interactions and thus have been identified as potential drug targets. To effectively target such regions, protein structure is critical. Loop structure prediction is a challenging subgroup in the field of protein structure prediction because of the reduced level of conservation in protein sequences compared to the secondary structure elements. AlphaFold 2 has been suggested to be one of the greatest achievements in the field of protein structure prediction. The AlphaFold 2 predicted protein structures near the X-ray resolution in the Critical Assessment of protein Structure Prediction (CASP 14) competition in 2020. The purpose of this work is to survey the performance of AlphaFold 2 in specifically predicting protein loop regions. We have constructed an independent dataset of 31,650 loop regions from 2613 proteins (deposited after the AlphaFold 2 was trained) with both experimentally determined structures and AlphaFold 2 predicted structures. With extensive evaluation using our dataset, the results indicate that AlphaFold 2 is a good predictor of the structure of loop regions, especially for short loop regions. Loops less than 10 residues in length have an average Root Mean Square Deviation (RMSD) of 0.33 Å and an average the Template Modeling score (TM-score) of 0.82. However, we see that as the number of residues in a given loop increases, the accuracy of AlphaFold 2’s prediction decreases. Loops more than 20 residues in length have an average RMSD of 2.04 Å and an average TM-score of 0.55. Such a correlation between accuracy and length of the loop is directly linked to the increase in flexibility. Moreover, AlphaFold 2 does slightly over-predict α-helices and β-strands in proteins.
more »
« less
Initial GPU Optimization of Template Modeling Score
Accuracy in the prediction of protein structures is key in understanding the biological functions of different proteins. Numerous measures of similarity tools for protein structures have been developed over the years, and these include Root Mean Square Deviation (RMSD), as well as Template Modeling Score (TM-score). While RMSD is influenced by the length of the protein and therefore the similarity between superimposed models can be affected by divergent loops in the models, TM-score is rather a robust and a more accurate method. TM-score, however, is much slower than RMSD in terms of calculations for the optimal superimposed model. Here, we present initial optimization work on GPU-TM-score, a GPU accelerated Template Modeling Score for fast and accurate measuring of similarity between protein structures. Our optimization is based on OpenACC parallelization and performance analysis of bottleneck regions and the KABSCH algorithm for the calculation of optimal superimposition within parallel architectures. Our initial results indicate an average 3.14× speedup compared to original TM-score on a benchmark set of 20 protein structures. This speedup is recorded on an Nvidia Volta V100 GPU compared to an AMD EPYC 7742 64-core processor.
more »
« less
- PAR ID:
- 10392948
- Date Published:
- Journal Name:
- Chronicle of computing
- ISSN:
- 2831-350X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Protein structure prediction is an important problem in bioinformatics and has been studied for decades. However, there are still few open-source comprehensive protein structure prediction packages publicly available in the field. In this paper, we present our latest open-source protein tertiary structure prediction system—MULTICOM2, an integration of template-based modeling (TBM) and template-free modeling (FM) methods. The template-based modeling uses sequence alignment tools with deep multiple sequence alignments to search for structural templates, which are much faster and more accurate than MULTICOM1. The template-free (ab initio or de novo) modeling uses the inter-residue distances predicted by DeepDist to reconstruct tertiary structure models without using any known structure as template. In the blind CASP14 experiment, the average TM-score of the models predicted by our server predictor based on the MULTICOM2 system is 0.720 for 58 TBM (regular) domains and 0.514 for 38 FM and FM/TBM (hard) domains, indicating that MULTICOM2 is capable of predicting good tertiary structures across the board. It can predict the correct fold for 76 CASP14 domains (95% regular domains and 55% hard domains) if only one prediction is made for a domain. The success rate is increased to 3% for both regular and hard domains if five predictions are made per domain. Moreover, the prediction accuracy of the pure template-free structure modeling method on both TBM and FM targets is very close to the combination of template-based and template-free modeling methods. This demonstrates that the distance-based template-free modeling method powered by deep learning can largely replace the traditional template-based modeling method even on TBM targets that TBM methods used to dominate and therefore provides a uniform structure modeling approach to any protein. Finally, on the 38 CASP14 FM and FM/TBM hard domains, MULTICOM2 server predictors (MULTICOM-HYBRID, MULTICOM-DEEP, MULTICOM-DIST) were ranked among the top 20 automated server predictors in the CASP14 experiment. After combining multiple predictors from the same research group as one entry, MULTICOM-HYBRID was ranked no. 5. The source code of MULTICOM2 is freely available athttps://github.com/multicom-toolbox/multicom/tree/multicom_v2.0.more » « less
-
Abstract Computational modeling of protein–DNA complex structures has important implications in biomedical applications such as structure‐based, computer aided drug design. A key step in developing methods for accurate modeling of protein–DNA complexes is similarity assessment between models and their reference complex structures. Existing methods primarily rely on distance‐based metrics and generally do not consider important functional features of the complexes, such as interface hydrogen bonds that are critical to specific protein–DNA interactions. Here, we present a new scoring function, ComparePD, which takes interface hydrogen bond energy and strength into account besides the distance‐based metrics for accurate similarity measure of protein–DNA complexes. ComparePD was tested on two datasets of computational models of protein–DNA complexes generated using docking (classified as easy, intermediate, and difficult cases) and homology modeling methods. The results were compared with PDDockQ, a modified version of DockQ tailored for protein–DNA complexes, as well as the metrics employed by the community‐wide experiment CAPRI (Critical Assessment of PRedicted Interactions). We demonstrated that ComparePD provides an improved similarity measure over PDDockQ and the CAPRI classification method by considering both conformational similarity and functional importance of the complex interface. ComparePD identified more meaningful models as compared to PDDockQ for all the cases having different top models between ComparePD and PDDockQ except for one intermediate docking case.more » « less
-
Abstract For CASP14, we developed deep learning‐based methods for predicting homo‐oligomeric and hetero‐oligomeric contacts and used them for oligomer modeling. To build structure models, we developed an oligomer structure generation method that utilizes predicted interchain contacts to guide iterative restrained minimization from random backbone structures. We supplemented this gradient‐based fold‐and‐dock method with template‐based andab initiodocking approaches using deep learning‐based subunit predictions on 29 assembly targets. These methods produced oligomer models with summed Z‐scores 5.5 units higher than the next best group, with the fold‐and‐dock method having the best relative performance. Over the eight targets for which this method was used, the best of the five submitted models had average oligomer TM‐score of 0.71 (average oligomer TM‐score of the next best group: 0.64), and explicit modeling of inter‐subunit interactions improved modeling of six out of 40 individual domains (ΔGDT‐TS > 2.0).more » « less
-
During in silico crystal structure prediction of organic molecules, millions of candidate structures are often generated. These candidates must be compared to remove duplicates prior to further analysis ( e.g. optimization with electronic structure methods) and ultimately compared with structures determined experimentally. The agreement of predicted and experimental structures forms the basis of evaluating the results from the Cambridge Crystallographic Data Centre (CCDC) blind assessment of crystal structure prediction, which further motivates the pursuit of rigorous alignments. Evaluating crystal structure packings using coordinate root-mean-square deviation (RMSD) for N molecules (or N asymmetric units) in a reproducible manner requires metrics to describe the shape of the compared molecular clusters to account for alternative approaches used to prioritize selection of molecules. Described here is a flexible algorithm called Progressive Alignment of Crystals ( PAC ) to evaluate crystal packing similarity using coordinate RMSD and introducing the radius of gyration ( R g ) as a metric to quantify the shape of the superimposed clusters. It is shown that the absence of metrics to describe cluster shape adds ambiguity to the results of the CCDC blind assessments because it is not possible to determine whether the superposition algorithm has prioritized tightly packed molecular clusters ( i.e. to minimize R g ) or prioritized reduced RMSD ( i.e. via possibly elongated clusters with relatively larger R g ). For example, it is shown that when the PAC algorithm described here uses single linkage to prioritize molecules for inclusion in the superimposed clusters, the results are nearly identical to those calculated by the widely used program COMPACK . However, the lower R g values obtained by the use of average linkage are favored for molecule prioritization because the resulting RMSDs more equally reflect the importance of packing along each dimension. It is shown that the PAC algorithm is faster than COMPACK when using a single process and its utility for biomolecular crystals is demonstrated. Finally, parallel scaling up to 64 processes in the open-source code Force Field X is presented.more » « less
An official website of the United States government

