Abstract Orbital precession has been linked to glacial cycles and the atmospheric carbon dioxide (CO2) concentration, yet the direct impact of precession on the carbon cycle is not well understood. We analyze output from an Earth system model configured under different orbital parameters to isolate the impact of precession on air‐sea CO2flux in the Southern Ocean—a component of the global carbon cycle that is thought to play a key role on past atmospheric CO2variations. Here, we demonstrate that periods of high precession are coincident with anomalous CO2outgassing from the Southern Ocean. Under high precession, we find a poleward shift in the southern westerly winds, enhanced Southern Ocean meridional overturning, and an increase in the surface ocean partial pressure of CO2along the core of the Antarctic Circumpolar Current. These results suggest that orbital precession may have played an important role in driving changes in atmospheric CO2.
more »
« less
Extratropical storms induce carbon outgassing over the Southern Ocean
Abstract The strength and variability of the Southern Ocean carbon sink is a significant source of uncertainty in the global carbon budget. One barrier to reconciling observations and models is understanding how synoptic weather patterns modulate air-sea carbon exchange. Here, we identify and track storms using atmospheric sea level pressure fields from reanalysis data to assess the role that storms play in driving air-sea CO2exchange. We examine the main drivers of CO2fluxes under storm forcing and quantify their contribution to Southern Ocean annual air-sea CO2fluxes. Our analysis relies on a forced ocean-ice simulation from the Community Earth System Model, as well as CO2fluxes estimated from Biogeochemical Argo floats. We find that extratropical storms in the Southern Hemisphere induce CO2outgassing, driven by CO2disequilibrium. However, this effect is an order of magnitude larger in observations compared to the model and caused by different reasons. Despite large uncertainties in CO2fluxes and storm statistics, observations suggest a pivotal role of storms in driving Southern Ocean air-sea CO2outgassing that remains to be well represented in climate models, and needs to be further investigated in observations.
more »
« less
- PAR ID:
- 10508574
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Southern Ocean is an important region for both heat and carbon uptake, due in large part to wind-driven circulation. This region also continually experiences strong winds associated with the passage of synoptic storms, which influence the upper ocean through strong fluxes of momentum, heat, freshwater, and gases. While studies have found that storms can induce strong carbon outgassing, their role in the combined heat and carbon uptake remains unknown. In this work, we explore the climatological impact of storms on the Southern Ocean combined heat and carbon uptake through two preindustrial coupled climate model runs with contrasting seasonal carbon fluxes. We use a feature tracking system to identify storms and create composites for storm-following and post-storm anomalous fluxes of heat and carbon. Storms induce a net anomalous release of heat and carbon from the ocean throughout the year, with clear seasonality in the magnitude of the fluxes that coincide with the background seasonal cycles. We find a strong model dependency for the storm-driven anomalous carbon fluxes, both in terms of the seasonal range and timing of maximum outgassing. Storm-induced anomalous fluxes are dampened on the order of days after the storm passes, with a small continued release of heat that is most persistent in the winter. Our study underlines the high uncertainty about the seasonal nature of storm impacts on the ocean and suggests that evolving atmospheric and oceanic conditions could impose opposing shifts in the future seasonality of storm impacts.more » « less
-
The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO 2 ), yet estimates of air-sea CO 2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO 2 exchange by relating fluxes to horizontal and vertical CO 2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO 2 gradient provide robust flux constraints. We found an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO 2 ( P co 2 )–based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations.more » « less
-
Abstract The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air‐sea carbon exchange remains unclear. Using a 1/20° physical‐biogeochemical coupled ocean model, we examined the impact of the current‐wind interaction on the surface carbon concentration and the air‐sea carbon exchange in the Southern Ocean. The current‐wind interaction decreased winter partial pressure of CO2(pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reducedpCO2in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2was found to be reduced by approximately 17%when including current‐wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current‐wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current‐wind interactions in the Southern Ocean can overestimate winter CO2outgassing.more » « less
-
We present improved estimates of air–sea CO2exchange over three latitude bands of the Southern Ocean using atmospheric CO2measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science374, 1275–1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθesurfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air–sea CO2exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2observations.more » « less
An official website of the United States government
