skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum computational advantage attested by nonlocal games with the cyclic cluster state
We propose a set of Bell-type nonlocal games that can be used to prove an unconditional quantum advantage in an objective and hardware-agnostic manner. In these games, the circuit depth needed to prepare a cyclic cluster state and measure a subset of its Pauli stabilizers on a quantum computer is compared to that of classical Boolean circuits with the same, nearest-neighboring gate connectivity. Using a circuit-based trapped-ion quantum computer, we prepare and measure a six-qubit cyclic cluster state with an overall fidelity of 60.6% and 66.4%, before and after correcting for measurement-readout errors, respectively. Our experimental results indicate that while this fidelity readily passes conventional (or depth-0) Bell bounds for local hidden-variable models, it is on the cusp of demonstrating a higher probability of success than what is possible by depth-1 classical circuits. Our games offer a practical and scalable set of quantitative benchmarks for quantum computers in the pre-fault-tolerant regime as the number of qubits available increases.  more » « less
Award ID(s):
1915011 1818914
PAR ID:
10349249
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical review research
Volume:
4
ISSN:
2643-1564
Page Range / eLocation ID:
033068
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthesis is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block opti-mization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noisy simulations, and large-size circuits on analytical models. Our technique can be applied after existing optimizations to achieve higher circuit fidelity. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compiler optimizations such as t|ket). When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits, Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation tool chain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains to further improve the circuit fidelity. 
    more » « less
  2. Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC’s power, but today’s Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuits that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative -- purely classical simulations -- and demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone. 
    more » « less
  3. null (Ed.)
    Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results. 
    more » « less
  4. Classical simulation of quantum circuits is crucial for evaluating and validating the design of new quantum algorithms. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading to the exponential growth of the memory requirement for the simulations. In this paper, we present a new data reduction technique to reduce the memory requirement of quantum circuit simulations. We apply our amplitude-aware lossy compression technique to the quantum state amplitude vector to trade the computation time and fidelity for memory space. The experimental results show that our simulator only needs 1/16 of the original memory requirement to simulate Quantum Fourier Transform circuits with 99.95% fidelity. The reduction amount of memory requirement suggests that we could increase 4 qubits in the quantum circuit simulation comparing to the simulation without our technique. Additionally, for some specific circuits, like Grover’s search, we could increase the simulation size by 18 qubits. 
    more » « less
  5. Meka, Raghu (Ed.)
    Preparing encoded logical states is the first step in a fault-tolerant quantum computation. Standard approaches based on concatenation or repeated measurement incur a significant time overhead. The Raussendorf-Bravyi-Harrington cluster state [Raussendorf et al., 2005] offers an alternative: a single-shot preparation of encoded states of the surface code, by means of a constant depth quantum circuit, followed by a single round of measurement and classical feedforward [Bravyi et al., 2020]. In this work we generalize this approach and prove that single-shot logical state preparation can be achieved for arbitrary quantum LDPC codes. Our proof relies on a minimum-weight decoder and is based on a generalization of Gottesman’s clustering-of-errors argument [Gottesman, 2014]. As an application, we also prove single-shot preparation of the encoded GHZ state in arbitrary quantum LDPC codes. This shows that adaptive noisy constant depth quantum circuits are capable of generating generic robust long-range entanglement. 
    more » « less