skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Explaining Algorithm Aversion with Metacognitive Bandits
Human-AI collaboration is an increasingly commonplace part of decision-making in real world applications. However, how humans behave when collaborating with AI is not well understood. We develop metacognitive bandits, a computational model of a human's advice-seeking behavior when working with an AI. The model describes a person's metacognitive process of deciding when to rely on their own judgment and when to solicit the advice of the AI. It also accounts for the difficulty of each trial in making the decision to solicit advice. We illustrate that the metacognitive bandit makes decisions similar to humans in a behavioral experiment. We also demonstrate that algorithm aversion, a widely reported bias, can be explained as the result of a quasi-optimal sequential decision-making process. Our model does not need to assume any prior biases towards AI to produce this behavior.  more » « less
Award ID(s):
1927245
NSF-PAR ID:
10349254
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Annual Meeting of the Cognitive Science Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences. 
    more » « less
  2. When people receive advice while making difficult decisions, they often make better decisions in the moment and also increase their knowledge in the process. However, such incidental learning can only occur when people cognitively engage with the information they receive and process this information thoughtfully. How do people process the information and advice they receive from AI, and do they engage with it deeply enough to enable learning? To answer these questions, we conducted three experiments in which individuals were asked to make nutritional decisions and received simulated AI recommendations and explanations. In the first experiment, we found that when people were presented with both a recommendation and an explanation before making their choice, they made better decisions than they did when they received no such help, but they did not learn. In the second experiment, participants first made their own choice, and only then saw a recommendation and an explanation from AI; this condition also resulted in improved decisions, but no learning. However, in our third experiment, participants were presented with just an AI explanation but no recommendation and had to arrive at their own decision. This condition led to both more accurate decisions and learning gains. We hypothesize that learning gains in this condition were due to deeper engagement with explanations needed to arrive at the decisions. This work provides some of the most direct evidence to date that it may not be sufficient to provide people with AI-generated recommendations and explanations to ensure that people engage carefully with the AI-provided information. This work also presents one technique that enables incidental learning and, by implication, can help people process AI recommendations and explanations more carefully. 
    more » « less
  3. Many real-life scenarios require humans to make difficult trade-offs: do we always follow all the traffic rules or do we violate the speed limit in an emergency? In general, how should we account for and balance the ethical values, safety recommendations, and societal norms, when we are trying to achieve a certain objective? To enable effective AI-human collaboration, we must equip AI agents with a model of how humans make such trade-offs in environments where there is not only a goal to be reached, but there are also ethical constraints to be considered and to possibly align with. These ethical constraints could be both deontological rules on actions that should not be performed, or also consequentialist policies that recommend avoiding reaching certain states of the world. Our purpose is to build AI agents that can mimic human behavior in these ethically constrained decision environments, with a long term research goal to use AI to help humans in making better moral judgments and actions. To this end, we propose a computational approach where competing objectives and ethical constraints are orchestrated through a method that leverages a cognitive model of human decision making, called multi-alternative decision field theory (MDFT). Using MDFT, we build an orchestrator, called MDFT-Orchestrator (MDFT-O), that is both general and flexible. We also show experimentally that MDFT-O both generates better decisions than using a heuristic that takes a weighted average of competing policies (WA-O), but also performs better in terms of mimicking human decisions as collected through Amazon Mechanical Turk (AMT). Our methodology is therefore able to faithfully model human decision in ethically constrained decision environments. 
    more » « less
  4. Abstract

    Recent work has explored how complementary strengths of humans and artificial intelligence (AI) systems might be productively combined. However, successful forms of human–AI partnership have rarely been demonstrated in real‐world settings. We present the iterative design and evaluation of Lumilo, smart glasses that help teachers help their students in AI‐supported classrooms by presenting real‐time analytics about students’ learning, metacognition, and behavior. Results from a field study conducted in K‐12 classrooms indicate that students learn more when teachers and AI tutors work together during class. We discuss implications of this research for the design of human–AI partnerships. We argue for more participatory approaches to research and design in this area, in which practitioners and other stakeholders are deeply, meaningfully involved throughout the process. Furthermore, we advocate for theory‐building and for principled approaches to the study of human–AI decision‐making in real‐world contexts.

     
    more » « less
  5. Current AI systems lack several important human capabilities, such as adaptability, generalizability, selfcontrol, consistency, common sense, and causal reasoning. We believe that existing cognitive theories of human decision making, such as the thinking fast and slow theory, can provide insights on how to advance AI systems towards some of these capabilities. In this paper, we propose a general architecture that is based on fast/slow solvers and a metacognitive component. We then present experimental results on the behavior of an instance of this architecture, for AI systems that make decisions about navigating in a constrained environment. We show how combining the fast and slow decision modalities, which can be implemented by learning and reasoning components respectively, allows the system to evolve over time and gradually pass from slow to fast thinking with enough experience, and that this greatly helps in decision quality, resource consumption, and efficiency. 
    more » « less