Membrane fouling is a major issue in many membrane applications. There are numerous methods used in attempt to mitigate membrane fouling, with one method being membrane surface patterning. However, it is still unclear how the ratio of foulant size to pattern size affects membrane fouling. In this study, we investigated constant foulant size while varying the pattern size on the membrane surface to be smaller than (300-nm), equal to (10-μm), and larger than (50-μm) the foulant (10-μm) on polyamide nanofiltration membranes. These membranes were compared to a commercial nanofiltration membrane and a control flat synthesized membrane. The membranes were tested with water, 2000 ppm Na2SO4, and three cycles of a n-dodecane (as oil) brine solution in a dead-end cell to assess the fouling resistance and flux recovery ability of each polyamide membrane type. From the fouling experiments, it was determined that none of the pattern sizes significantly affect the flux recovery ratio, but smaller than and larger than patterns decreased the fouling rate on the polyamide membranes by a small margin.
more »
« less
Nanopatterning Reduces Bacteria Fouling in Ultrafiltration
This contribution describes a method to reduce bacteria fouling on ultrafiltration membranes by applying nanoscale line-and-groove patterns on the surface of membranes. Nanoimprint lithography was used to pattern the polysulfone membrane surfaces with a peak height of 66.2 nm and a period of 594.0 nm. Surface characterization using scanning electron microscopy and atomic force microscopy confirmed that patterning was successful over the entire stamped area of the membrane. Water permeance tests determined that the permeance decreased by 36% upon patterning. Static batch experiments that explored the attachment of Escherichia coli K12 cells to the membranes demonstrated that the patterned membranes had a 60% lower attachment of microbes than the nonpatterned membranes. Dynamic bacteria fouling experiments using E. coli cells showed that the patterned membranes had a higher flux recovery ratio (88%) compared to the nonpatterned membranes (70%). On the basis of these studies, we suggest that patterning membranes can reduce the initial attachments of microbial cells and that different pattern sizes and shapes should be investigated to gain a fundamental understanding of their influence on bacteria fouling.
more »
« less
- PAR ID:
- 10349265
- Date Published:
- Journal Name:
- ACS ES&T Water
- ISSN:
- 2690-0637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bioinspired membranes offer an alternative approach to improving the fouling resistance of commercial membranes for oil separations. Here, two perfluoropolyether oils, a lower viscosity Krytox 103 (K103) and a higher viscosity Krytox 107 (K107), were infused into commercial polyvinylidene fluoride (PVDF) ultrafiltration membranes to mimic the Nepenthes pitcher plant. The transmembrane pressure required to perform long-term oil permeance tests was optimized by testing the liquid-infused membranes at different applied pressures. Crystal violet staining and variable pressure scanning electron microscopy qualitatively suggest that the oil layer remained on the membranes after the oil separation experiments were conducted. Over 5 cycles, K103- and K107- liquid-infused membranes exhibited a consistent permeance of ∼ 30000 L m-2h−1 bar−1 at 1.0 bar and ∼ 14500 L m-2h−1 bar−1 at 0.5 bar, respectively. The steady performance further supports a long-lasting oil layer persists on the membrane surface and inside membrane’s pores. Next, experiments were conducted to determine the stability of the Krytox oil post accelerated cleaning tests using bleach. No structural changes to the Krytox oils were detected by thermogravimetric analysis or nuclear magnetic resonance spectroscopy. Dynamic fouling experiments using Escherichia coli K12 revealed that the liquid-infused membranes had higher flux recovery ratios (∼95 %) than the bare PVDF control membranes (∼55 %). Our results demonstrate that liquid-infused membranes exhibit chlorine stability and superior fouling resistance, presenting a promising bioinspired membrane that can be used in pressure-driven oil separation applications.more » « less
-
Membranes used for desalination still face challenges during operation. One of these challenges is the buildup of salt ions at the membrane surface. This is known as concentration polarization, and it has a negative effect on membrane water permeance and salt rejection. In an attempt to decrease concentration polarization, a line-and-groove nanopattern was applied to a nanofiltration (NF) membrane. Aqueous sodium sulfate (Na2SO4) solutions were used to test the rejection and permeance of both pristine and patterned membranes. It was found that the nanopatterns did not reduce but increased the concentration polarization at the membrane surface. Based on these studies, different pattern shapes and sizes should be investigated to gain a fundamental understanding of the influence of pattern size and shape on concentration polarization.more » « less
-
Membrane separations are simple to operate, scalable, versatile, and energy efficient, but their broader use is curtailed by fouling or performance decline due to feed component depositing on the membrane surface. Surface functionalization with groups such as zwitterions can mitigate the adsorption of organic compounds, thus limiting fouling. This can be achieved by using surface-segregating copolymer additives during membrane manufacture, but there is a need for better understanding of how the polymer structure and architecture affect the effectiveness of these additives in improving membrane performance. In this study, we aim to explore the impact of the architecture of zwitterionic copolymer additives for polyvinylidene fluoride (PVDF)-based membranes in fouling mitigation and ionic strength response. We prepared membranes from blends of PVDF with zwitterionic (ZI) copolymers with two different architectures, random and comb-shaped. As the random copolymer, we used poly(methyl methacrylate- random- sulfobetaine-2-vinyl pyridine) (PMMA- r -SB2VP) synthesized by free radical polymerization. The comb-shaped copolymer was synthesized by grafting SB2VP side-chains from a PVDF backbone by controlled radical polymerization. Membranes were fabricated from PVDF-copolymer blends containing up to 5 wt% ZI copolymer. Compared to the additive-free PVDF membrane, water permeance increased five-fold with 5 wt% addition of either copolymer. The comb copolymer additive led to better resistance to fouling by a saline oil-in-water emulsion and to simulated protein adsorption in Atomic Force Microscopy (AFM) force measurements. The additive architecture had a significant influence on how membranes respond to changes in feed salinity, which is known to affect intra- and inter-molecular interactions in zwitterionic polymers. The random copolymer containing membrane showed a small and mostly reversible decrease in its permeance with salinity. In contrast, the comb copolymer-containing membrane underwent a conformational reorganization in saline solutions that leads to an irreversible permeance decrease, increased zwitterionic group content on the membrane surface, and smoother surface topography. The higher mobility of the zwitterionic groups in the comb-shaped architecture facilitates reorganization of the zwitterionic side-chains in response to ionic strength. Overall, this study establishes a new approach for developing highly fouling resistant membranes and defines how the architecture of a zwitterionic copolymer additive impacts the ionic strength response and fouling resistance of the membrane.more » « less
-
Direct contact membrane distillation (DCMD) has been conducted to treat hydraulic fracturing-produced water using polyvinylidenedifluoride (PVDF) membranes. Tailoring the surface properties of the membrane is critical in order to reduce the rate of adsorption of dissolved organic species as well as mineral salts. The PVDF membranes have been modified by grafting zwitterion and polyionic liquid-based polymer chains. In addition, surface oxidation of the PVDF membrane has been conducted using KMnO4 and NaOH. Surface modification conditions were chosen in order to minimize the decrease in contact angle. Thus, the membranes remain hydrophobic, essential for suppression of wetting. DCMD was conducted using the base PVDF membrane as well as modified membranes. In addition, DCMD was conducted on the base membrane using produced water (PW) that was pretreated by electrocoagulation to remove dissolved organic compounds. After DCMD all membranes were analyzed by scanning electron microscopy imaging as well as Energy-Dispersive X-Ray spectroscopy. Surface modification led to a greater volume of PW being treated by the membrane prior to drastic flux decline. The results indicate that tailoring the surface properties of the membrane enhances fouling resistance and could reduce pretreatment requirements.more » « less