skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A transient peak in marine sulfate after the 635-Ma snowball Earth
A series of dramatic oceanic and atmospheric events occurred in the immediate aftermath of the Marinoan “snowball Earth” meltdown ∼635 My ago. However, at the 10- to 100-ky timescale, the order, rate, duration, and causal-feedback relationships of these individual events remain nebulous. Nonetheless, rapid swings in regional marine sulfate concentrations are predicted to have occurred in the aftermath of a snowball Earth, due to the nonlinear responses of its two major controlling fluxes: oxidative weathering on the continents and pyrite burial in marine sediments. Here, through the application of multiple isotope systems on various carbon and sulfur compounds, we determined extremely 13 C-depleted calcite cements in the basal Ediacaran in South China to be the result of microbial sulfate reduction coupled to anaerobic oxidation of methane, which indicates an interval of high sulfate concentrations in some part of the postmeltdown ocean. Regional chemostratigraphy places the 13 C-depleted cements at the equivalent of the earliest Ediacaran 17 O-depletion episode, thus confining the timing of this peak in sulfate concentrations within ∼50 ky since the onset of the deglaciation. The dearth of similarly 13 C-depleted cements in other Proterozoic successions implies that the earliest Ediacaran peak in marine sulfate concentration is a regional and likely transient event.  more » « less
Award ID(s):
2021207 2020593
PAR ID:
10349508
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
19
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As marine sediments are buried, microbial communities transition from sulfate-reduction to methane-production after sulfate is depleted. When this biogenic methane diffuses into the overlying sulfate-rich sediments, it forms a sulfate-methane transition zone (SMTZ) because sulfate reducers deplete hydrogen concentrations and make hydrogenotrophic methanogenesis exergonic in the reverse direction, a process called the anaerobic oxidation of methane (AOM). Microbial participation in these processes is often inferred from geochemistry, genes, and gene expression changes with sediment depth, using sedimentation rates to convert depth to time. Less is known about how natural sediments transition through these geochemical states transition in real-time. We examined 16S rRNA gene amplicon libraries and metatranscriptomes in microcosms of anoxic sediment from the White Oak River estuary, NC, with three destructively sampled replicates with methane added (586-day incubations) and three re-sampled un-amended replicates (895-day incubations). Sulfate dropped to a low value (∼0.3 mM) on similar days for both experiments (312 and 320 days, respectively), followed by a peak in hydrogen, intermittent increases in methane-cycling archaea starting on days 375 and 362 (mostly Methanolinea spp. and Methanosaeta spp., and Methanococcoides sp. ANME-3), and a methane peak 1 month later. However, methane δ 13 C values only show net methanogenesis 6 months after methane-cycling archaea increase and 4 months after the methane peak, when sulfate is consistently below 0.1 mM and hydrogen increases to a stable 0.61 ± 0.13 nM (days 553–586, n = 9). Sulfate-reducing bacteria (mostly Desulfatiglans spp. and Desulfosarcina sp. SEEP-SRB1) increase in relative abundance only during this period of net methane production, suggesting syntrophy with methanogens in the absence of sulfate. The transition from sulfate reduction to methane production in marine sediments occurs through a prolonged period of methane-cycling by methanogens at low sulfate concentrations, and steady growth of sulfate reducers along with methanogens after sulfate is depleted. 
    more » « less
  2. The snowball Earth hypothesis predicts that continental chemical weathering diminished substantially during, but rebounded strongly after, the Marinoan ice age some 635 Mya. Defrosting the planet would result in a plume of fresh glacial meltwater with a different chemical composition from underlying hypersaline seawater, generating both vertical and lateral salinity gradients. Here, we test the plumeworld hypothesis using lithium isotope compositions in the Ediacaran Doushantuo cap dolostone that accumulated in the aftermath of the Marinoan snowball Earth along a proximal–distal (nearshore–offshore) transect in South China. Our data show an overall decreasing δ7Li trend with distance from the shoreline, consistent with the variable mixing of a meltwater plume with high δ7Li (due to incongruent silicate weathering on the continent) and hypersaline seawater with low δ7Li (due to synglacial distillation). The evolution of low δ7Li of synglacial seawater, as opposed to the modern oceans with high δ7Li, was likely driven by weak continental chemical weathering coupled with strong reverse weathering on the seafloor underneath silica-rich oceans. The spatial pattern of δ7Li is also consistent with the development and then collapse of the meltwater plume that occurred at the time scale of cap dolostone accumulation. Therefore, the δ7Li data are consistent with the plumeworld hypothesis, considerably reduced chemical weathering on the continent during the Marinoan snowball Earth, and enhanced reverse weathering on the seafloor of Precambrian oceans. 
    more » « less
  3. null (Ed.)
    The Ediacaran Period (635 to 541 Ma) marks the global transition to a more productive biosphere, evidenced by increased availability of food and oxidants, the appearance of macroscopic animals, significant populations of eukaryotic phytoplankton, and the onset of massive phosphorite deposition. We propose this entire suite of changes results from an increase in the size of the deep-water marine phosphorus reservoir, associated with rising sulfate concentrations and increased remineralization of organic P by sulfate-reducing bacteria. Simple mass balance calculations, constrained by modern anoxic basins, suggest that deep-water phosphate concentrations may have increased by an order of magnitude without any increase in the rate of P input from the continents. Strikingly, despite a major shift in phosphorite deposition, a new compilation of the phosphorus content of Neoproterozoic and early Paleozoic shows little secular change in median values, supporting the view that changes in remineralization and not erosional P fluxes were the principal drivers of observed shifts in phosphorite accumulation. The trigger for these changes may have been transient Neoproterozoic weathering events whose biogeochemical consequences were sustained by a set of positive feedbacks, mediated by the oxygen and sulfur cycles, that led to permanent state change in biogeochemical cycling, primary production, and biological diversity by the end of the Ediacaran Period. 
    more » « less
  4. Abstract Acritarch biostratigraphic and δ 13 C chemostratigraphic data from the Krol A Formation in the Solan area (Lesser Himalaya, northern India) are integrated to aid inter-basinal correlation of early–middle Ediacaran strata. We identified a prominent negative δ 13 C excursion (likely equivalent to EN2 in the lower Doushantuo Formation in the Yangtze Gorges area of South China), over a dozen species of acanthomorphs (including two new species— Cavaspina tiwariae Xiao n. sp., Dictyotidium grazhdankinii Xiao n. sp.), and numerous other microfossils from an interval in the Krol A Formation. Most microfossil taxa from the Krol A and the underlying Infra-Krol formations are also present in the Doushantuo Formation. Infra-Krol acanthomorphs support a correlation with the earliest Doushantuo biozone: the Appendisphaera grandis - Weissiella grandistella - Tianzhushania spinosa Assemblage Zone. Krol A microfossils indicate a correlation with the second or (more likely, when δ 13 C data are considered) the third biozone in the lower Doushantuo Formation (i.e., the Tanarium tuberosum - Schizofusa zangwenlongii or Tanarium conoideum - Cavaspina basiconica Assemblage Zone). The association of acanthomorphs with EN2 in the Krol Formation fills a critical gap in South China where chert nodules, and thus acanthomorphs, are rare in the EN2 interval. Like many other Ediacaran acanthomorphs assemblages, Krol A and Doushantuo acanthomorphs are distributed in low paleolatitudes, and they may represent a distinct paleobiogeographic province in east Gondwana. The Indian data affirm the stratigraphic significance of acanthomorphs and δ 13 C, clarify key issues of lower Ediacaran bio- and chemostratigraphic correlation, and strengthen the basis for the study of Ediacaran eukaryote evolution and paleobiogeography. UUID: http://zoobank.org/5289fdb2-0e49-4b3b-880f-f5b21acab371 . 
    more » « less
  5. Abstract The Great Unconformity of the Rocky Mountain region (western North America), where Precambrian crystalline basement is nonconformably overlain by Phanerozoic strata, represents the removal of as much as 1.5 b.y. of rock record during 10-km-scale basement exhumation. We evaluate the timing of exhumation of basement rocks at five locations by combining geologic data with multiple thermochronometers. 40Ar/39Ar K-feldspar multi-diffusion domain (MDD) modeling indicates regional multi-stage basement cooling from 275 to 150 °C occurred at 1250–1100 Ma and/or 1000–700 Ma. Zircon (U-Th)/He (ZHe) dates from the Rocky Mountains range from 20 to 864 Ma, and independent forward modeling of ZHe data is also most consistent with multi-stage cooling. ZHe inverse models at five locations, combined with K-feldspar MDD and sample-specific geochronologic and/or thermochronologic constraints, document multiple pulses of basement cooling from 250 °C to surface temperatures with a major regional basement exhumation event 1300–900 Ma, limited cooling in some samples during the 770–570 Ma breakup of Rodinia and/or the 717–635 Ma snowball Earth, and ca. 300 Ma Ancestral Rocky Mountains cooling. These data argue for a tectonic control on basement exhumation leading up to formation of the Precambrian-Cambrian Great Unconformity and document the formation of composite erosional surfaces developed by faulting and differential uplift. 
    more » « less