skip to main content


Title: Exploiting Interdisciplinary Research Design for Temporally Complex Big Data: Discussion of a Case- Study Using on Heterogenous Bibliographic Big Data
ABSTRACT Artificial Intelligence (AI) methods are valued for their ability to predict outcomes from dynamically complex data. Despite this virtue, AI is widely criticized as a “black box” i.e., lacking mechanistic explanations to accompany predictions. We introduce a novel interdisciplinary approach that balances the predictive power of data-driven methods with theory-driven explanatory power by presenting a shared use case from four disciplinary perspectives. The use case examines scientific career trajectories through temporally complex, heterogeneous bibliographic big data. Topics addressed include: data representation in complex problems, trade-offs between theoretical, hypothesis driven, and data-driven approaches, AI trustworthiness, model fairness, algorithm explainability and AI adoption/usability. Panelists and audience members will be prompted to discuss the value of approach presented versus other ways to address the challenges raised by the panel, and to consider their limitations and remaining challenges.  more » « less
Award ID(s):
2122232
NSF-PAR ID:
10349613
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Association for Information Science and Technology
Volume:
59
Issue:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The theoretical foundations of Big Data Science are not fully developed, yet. This study proposes a new scalable framework for Big Data representation, high-throughput analytics (variable selection and noise reduction), and model-free inference. Specifically, we explore the core principles of distribution-free and model-agnostic methods for scientific inference based on Big Data sets. Compressive Big Data analytics (CBDA) iteratively generates random (sub)samples from a big and complex dataset. This subsampling with replacement is conducted on the feature and case levels and results in samples that are not necessarily consistent or congruent across iterations. The approach relies on an ensemble predictor where established model-based or model-free inference techniques are iteratively applied to preprocessed and harmonized samples. Repeating the subsampling and prediction steps many times, yields derived likelihoods, probabilities, or parameter estimates, which can be used to assess the algorithm reliability and accuracy of findings via bootstrapping methods, or to extract important features via controlled variable selection. CBDA provides a scalable algorithm for addressing some of the challenges associated with handling complex, incongruent, incomplete and multi-source data and analytics challenges. Albeit not fully developed yet, a CBDA mathematical framework will enable the study of the ergodic properties and the asymptotics of the specific statistical inference approaches via CBDA. We implemented the high-throughput CBDA method using pure R as well as via the graphical pipeline environment. To validate the technique, we used several simulated datasets as well as a real neuroimaging-genetics of Alzheimer’s disease case-study. The CBDA approach may be customized to provide generic representation of complex multimodal datasets and to provide stable scientific inference for large, incomplete, and multisource datasets. 
    more » « less
  2. null (Ed.)
    Abstract Scientific and engineering problems often require the use of artificial intelligence to aid understanding and the search for promising designs. While Gaussian processes (GP) stand out as easy-to-use and interpretable learners, they have difficulties in accommodating big data sets, categorical inputs, and multiple responses, which has become a common challenge for a growing number of data-driven design applications. In this paper, we propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously. The method is built upon the latent-variable Gaussian process (LVGP) model where categorical factors are mapped into a continuous latent space to enable GP modeling of mixed-variable data sets. By extending variational inference to LVGP models, the large training data set is replaced by a small set of inducing points to address the scalability issue. Output response vectors are represented by a linear combination of independent latent functions, forming a flexible kernel structure to handle multiple responses that might have distinct behaviors. Comparative studies demonstrate that the proposed method scales well for large data sets with over 104 data points, while outperforming state-of-the-art machine learning methods without requiring much hyperparameter tuning. In addition, an interpretable latent space is obtained to draw insights into the effect of categorical factors, such as those associated with “building blocks” of architectures and element choices in metamaterial and materials design. Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism with aperiodic microstructures and multiple materials. 
    more » « less
  3. Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infected person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper. 
    more » « less
  4. Abstract We introduce a novel method for Gaussian process (GP) modeling of massive datasets called globally approximate Gaussian process (GAGP). Unlike most large-scale supervised learners such as neural networks and trees, GAGP is easy to fit and can interpret the model behavior, making it particularly useful in engineering design with big data. The key idea of GAGP is to build a collection of independent GPs that use the same hyperparameters but randomly distribute the entire training dataset among themselves. This is based on our observation that the GP hyperparameter approximations change negligibly as the size of the training data exceeds a certain level, which can be estimated systematically. For inference, the predictions from all GPs in the collection are pooled, allowing the entire training dataset to be efficiently exploited for prediction. Through analytical examples, we demonstrate that GAGP achieves very high predictive power matching (and in some cases exceeding) that of state-of-the-art supervised learning methods. We illustrate the application of GAGP in engineering design with a problem on data-driven metamaterials, using it to link reduced-dimension geometrical descriptors of unit cells and their properties. Searching for new unit cell designs with desired properties is then achieved by employing GAGP in inverse optimization. 
    more » « less
  5. We introduce a novel method to enable Gaussian process (GP) modeling of massive datasets, called globally approximate Gaussian process (GAGP). Unlike most largescale supervised learners such as neural networks and trees, GAGP is easy to fit and can interpret the model behavior, making it particularly useful in engineering design with big data. The key idea of GAGP is to build an ensemble of independent GPs that distribute the entire training dataset among themselves and use the same hyperparameters. This is based on the observation that the GP hyperparameter estimates negligibly change as the size of the training data exceeds a certain level that can be estimated in a systematic way. For inference, the predictions from all GPs in the ensemble are pooled which allows to efficiently exploit the entire training dataset for prediction. Through analytical examples, we demonstrate that GAGP achieves very high predictive power that matches (and in some cases exceeds) that of state-of-the-art machine learning methods. We illustrate the application of GAGP in engineering design with a problem on data-driven metamaterials design where it is used to link reduced-dimension geometrical descriptors of unit cells and their properties. Searching for new unit cell designs with desired properties is then achieved by employing GAGP in inverse optimization. 
    more » « less