We introduce a novel method to enable Gaussian process (GP) modeling of massive datasets, called globally approximate Gaussian process (GAGP). Unlike most largescale supervised learners such as neural networks and trees, GAGP is easy to fit and can interpret the model behavior, making it particularly useful in engineering design with big data. The key idea of GAGP is to build an ensemble of independent GPs that distribute the entire training dataset among themselves and use the same hyperparameters. This is based on the observation that the GP hyperparameter estimates negligibly change as the size of the training data exceeds a certain level that can be estimated in a systematic way. For inference, the predictions from all GPs in the ensemble are pooled which allows to efficiently exploit the entire training dataset for prediction. Through analytical examples, we demonstrate that GAGP achieves very high predictive power that matches (and in some cases exceeds) that of state-of-the-art machine learning methods. We illustrate the application of GAGP in engineering design with a problem on data-driven metamaterials design where it is used to link reduced-dimension geometrical descriptors of unit cells and their properties. Searching for new unit cell designs with desired properties is then achieved by employing GAGP in inverse optimization.
more »
« less
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
Abstract We introduce a novel method for Gaussian process (GP) modeling of massive datasets called globally approximate Gaussian process (GAGP). Unlike most large-scale supervised learners such as neural networks and trees, GAGP is easy to fit and can interpret the model behavior, making it particularly useful in engineering design with big data. The key idea of GAGP is to build a collection of independent GPs that use the same hyperparameters but randomly distribute the entire training dataset among themselves. This is based on our observation that the GP hyperparameter approximations change negligibly as the size of the training data exceeds a certain level, which can be estimated systematically. For inference, the predictions from all GPs in the collection are pooled, allowing the entire training dataset to be efficiently exploited for prediction. Through analytical examples, we demonstrate that GAGP achieves very high predictive power matching (and in some cases exceeding) that of state-of-the-art supervised learning methods. We illustrate the application of GAGP in engineering design with a problem on data-driven metamaterials, using it to link reduced-dimension geometrical descriptors of unit cells and their properties. Searching for new unit cell designs with desired properties is then achieved by employing GAGP in inverse optimization.
more »
« less
- PAR ID:
- 10121100
- Date Published:
- Journal Name:
- Journal of Mechanical Design
- Volume:
- 141
- Issue:
- 11
- ISSN:
- 1050-0472
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The canonical technique for nonlinear modeling of spatial/point‐referenced data is known as kriging in geostatistics, and as Gaussian Process (GP) regression for surrogate modeling and statistical learning. This article reviews many similarities shared between kriging and GPs, but also highlights some important differences. One is that GPs impose a process that can be used to automate kernel/variogram inference, thus removing the human from the loop. The GP framework also suggests a probabilistically valid means of scaling to handle a large corpus of training data, that is, an alternative to ordinary kriging. Finally, recent GP implementations are tailored to make the most of modern computing architectures, such as multi‐core workstations and multi‐node supercomputers. We argue that such distinctions are important even in classically geostatistical settings. To back that up, we present out‐of‐sample validation exercises using two, real, large‐scale borehole data sets acquired in the mining of gold and other minerals. We compare classic kriging with several variations of modern GPs and conclude that the latter is more economical (fewer human and compute resources), more accurate and offers better uncertainty quantification. We go on to show how the fully generative modeling apparatus provided by GPs can gracefully accommodate left‐censoring of small measurements, as commonly occurs in mining data and other borehole assays.more » « less
-
Obtaining high certainty in predictive models is crucial for making informed and trustworthy decisions in many scientific and engineering domains. However, extensive experimentation required for model accuracy can be both costly and time-consuming. This paper presents an adaptive sampling approach designed to reduce epistemic uncertainty in predictive models. Our primary contribution is the development of a metric that estimates potential epistemic uncertainty leveraging prediction interval-generation neural networks.This estimation relies on the distance between the predicted upper and lower bounds and the observed data at the tested positions and their neighboring points. Our second contribution is the proposal of a batch sampling strategy based on Gaussian processes (GPs). A GP is used as a surrogate model of the networks trained at each iteration of the adaptive sampling process. Using this GP, we design an acquisition function that selects a combination of sampling locations to maximize the reduction of epistemic uncertainty across the domain.We test our approach on three unidimensional synthetic problems and a multi-dimensional dataset based on an agricultural field for selecting experimental fertilizer rates.The results demonstrate that our method consistently converges faster to minimum epistemic uncertainty levels compared to Normalizing Flows Ensembles, MC-Dropout, and simple GPs.more » « less
-
null (Ed.)Abstract Scientific and engineering problems often require the use of artificial intelligence to aid understanding and the search for promising designs. While Gaussian processes (GP) stand out as easy-to-use and interpretable learners, they have difficulties in accommodating big data sets, categorical inputs, and multiple responses, which has become a common challenge for a growing number of data-driven design applications. In this paper, we propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously. The method is built upon the latent-variable Gaussian process (LVGP) model where categorical factors are mapped into a continuous latent space to enable GP modeling of mixed-variable data sets. By extending variational inference to LVGP models, the large training data set is replaced by a small set of inducing points to address the scalability issue. Output response vectors are represented by a linear combination of independent latent functions, forming a flexible kernel structure to handle multiple responses that might have distinct behaviors. Comparative studies demonstrate that the proposed method scales well for large data sets with over 104 data points, while outperforming state-of-the-art machine learning methods without requiring much hyperparameter tuning. In addition, an interpretable latent space is obtained to draw insights into the effect of categorical factors, such as those associated with “building blocks” of architectures and element choices in metamaterial and materials design. Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism with aperiodic microstructures and multiple materials.more » « less
-
Gaussian processes (GPs) are very widely used for modeling of unknown functions or surfaces in applications ranging from regression to classification to spatial processes. Although there is an increasingly vast literature on applications, methods, theory and algorithms related to GPs, the overwhelming majority of this literature focuses on the case in which the input domain corresponds to a Euclidean space. However, particularly in recent years with the increasing collection of complex data, it is commonly the case that the input domain does not have such a simple form. For example, it is common for the inputs to be restricted to a non-Euclidean manifold, a case which forms the motivation for this article. In particular, we propose a general extrinsic framework for GP modeling on manifolds, which relies on embedding of the manifold into a Euclidean space and then constructing extrinsic kernels for GPs on their images. These extrinsic Gaussian processes (eGPs) are used as prior distributions for unknown functions in Bayesian inferences. Our approach is simple and general, and we show that the eGPs inherit fine theoretical properties from GP models in Euclidean spaces. We consider applications of our models to regression and classification problems with predictors lying in a large class of manifolds, including spheres, planar shape spaces, a space of positive definite matrices, and Grassmannians. Our models can be readily used by practitioners in biological sciences for various regression and classification problems, such as disease diagnosis or detection. Our work is also likely to have impact in spatial statistics when spatial locations are on the sphere or other geometric spaces.more » « less
An official website of the United States government

