skip to main content


Title: A new and improved IceCube point source analysis
Abstract The IceCube Neutrino Observatory, a cubic kilometer scale Cherenkov detector deployed in the deep ice at the geographic South Pole, investigates extreme astrophysical phenomena by studying the corresponding high-energy neutrino signal. Its discovery of a diffuse flux of astrophysical neutrinos with energies up to the PeV scale in 2013 has triggered a vast effort to identify the mostly unknown sources of these high energy neutrinos. Here, we present a new IceCube point-source search that improves the accuracy of the statistical analysis, especially at energies of a few TeV and below. The new approach is based on multidimensional kernel density estimation for the probability density functions and new estimators for the observables, namely the reconstructed energy and the estimated angular uncertainty on the reconstructed arrival direction. The more accurate analysis provides an improvement in discovery potential up to ∼30% over previous works for hard spectrum sources.  more » « less
Award ID(s):
1913607
NSF-PAR ID:
10349671
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
16
Issue:
11
ISSN:
1748-0221
Page Range / eLocation ID:
C11002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Neutrino astronomy saw its birth with the discovery by IceCube of a difFuse flux at energies above 60 TeV with intensity comparable to a predicted upper limit to the flux from extra-galactic sources of ultra-high energy cosmic rays (UHECRs). While such an upper limit corresponds to the case of calorimetric sources, in which cosmic rays lose all their energy into photo-pion production, the first statistically significant coincident observation between neutrinos and gamma-rays was observed from a blazar of intriguing nature. A very-high-energy muon event, of most probable neutrino energy of 290 TeV for an E −2.13 spectrum, alerted other observatories triggering a large amount of investigations in many bands of the electromagnetic (EM) spectrum. A high gamma-ray state from the blazar was revealed soon after the event and in a follow up to about 40 days. A posteriori observations also in the optical and in the radio indicated a rise of the flux from the TXS 0506+056 blazar. A previous excess of events of duration of more than 100 d was observed by IceCube with higher significance than the alert itself. These observations triggered more complex modelling than simple one zone proton synchrotron models for proton acceleration in jets of active galactic nuclei (AGNs) and more observations across the EM spectrum. A second evidence was a steady excess of about 50 neutrino events with reconstructed soft spectrum in a sample of lower energy well reconstructed muon events than the alert event. A hot spot was identified in a catalogue of 110 gamma-ray intense emitters and starburst galaxies in a direction compatible to NGC 1068 with significance of 2.9 σ . NGC 1068 hosts a mildly relativistic jet in a starburst galaxy, seen not from the jet direction but rather through the torus. This Seyfert II galaxy is at only 14.4 Mpc from the Earth. The source turned out to be also the hottest spot of an all-sky search. Analysed cumulatively, the catalogue excess was 3.3 σ with the contribution of NGC 1068 and TXS 0506+056, as expected, and other 2 sources, PKS 1424+240, and GB6 J1542+6129, with similar features to TXS 0506+056, indicating that they might all be Flat Spectrum Radio Quasars (FSRQs). While all these observations and the directions of the measured events contributing to diffuse fluxes hint to their extra-galactic origin, a few percent level contribution might be the end of a lower energy ‘granted’ flux of neutrinos from interactions of cosmic rays in the Galactic Plane. This relevant observation is at the reach of IceCube and other neutrino telescopes. These aspects were discussed at the conference and are summarised in this write up. 
    more » « less
  2. Abstract High-energy neutrinos are a promising tool for identifying astrophysical sources of high and ultra-high energy cosmic rays (UHECR). Prospects of detecting neutrinos at high energies (≳TeV) from blazars have been boosted after the recent association of IceCube-170922A and TXS 0506+056. We investigate the high-energy neutrino, IceCube-190331A, a high-energy starting event (HESE) with a high likelihood of being astrophysical in origin. We initiated a Swift/XRT and UVOT tiling mosaic of the neutrino localisation, and followed up with ATCA radio observations, compiling a multiwavelength SED for the most likely source of origin. NuSTAR observations of the neutrino location and a nearby X-ray source were also performed. We find two promising counterpart in the 90% confidence localisation region and identify the brightest as the most likely counterpart. However, no Fermi/LAT γ-ray source and no prompt Swift/BAT source is consistent with the neutrino event. At this point it is unclear whether any of the counterparts produced IceCube-190331A. We note that the Helix Nebula is also consistent with the position of the neutrino event, and we calculate that associated particle acceleration processes cannot produce the required energies to generate a high-energy HESE neutrino. 
    more » « less
  3. ABSTRACT

    We report on the search for optical counterparts to IceCube neutrino alerts released between 2016 April and 2021 August with the All-Sky Automated Survey for SuperNovae (ASAS-SN). Despite the discovery of a diffuse astrophysical high-energy neutrino flux in 2013, the source of those neutrinos remains largely unknown. Since 2016, IceCube has published likely astrophysical neutrinos as public real-time alerts. Through a combination of normal survey and triggered target-of-opportunity observations, ASAS-SN obtained images within 1 h of the neutrino detection for 20 per cent (11) of all observable IceCube alerts and within one day for another 57 per cent (32). For all observable alerts, we obtained images within at least two weeks from the neutrino alert. ASAS-SN provides the only optical follow-up for about 17 per cent of IceCube’s neutrino alerts. We recover the two previously claimed counterparts to neutrino alerts, the flaring-blazar TXS 0506 + 056 and the tidal disruption event AT2019dsg. We investigate the light curves of previously detected transients in the alert footprints, but do not identify any further candidate neutrino sources. We also analysed the optical light curves of Fermi 4FGL sources coincident with high-energy neutrino alerts, but do not identify any contemporaneous flaring activity. Finally, we derive constraints on the luminosity functions of neutrino sources for a range of assumed evolution models.

     
    more » « less
  4. Abstract The majority of astrophysical neutrinos have undetermined origins. The IceCube Neutrino Observatory has observed astrophysical neutrinos but has not yet identified their sources. Blazars are promising source candidates, but previous searches for neutrino emission from populations of blazars detected in ≳GeV gamma rays have not observed any significant neutrino excess. Recent findings in multimessenger astronomy indicate that high-energy photons, coproduced with high-energy neutrinos, are likely to be absorbed and reemitted at lower energies. Thus, lower-energy photons may be better indicators of TeV–PeV neutrino production. This paper presents the first time-integrated stacking search for astrophysical neutrino emission from MeV-detected blazars in the first Fermi Large Area Telescope low energy (1FLE) catalog using ten years of IceCube muon–neutrino data. The results of this analysis are found to be consistent with a background-only hypothesis. Assuming an E −2 neutrino spectrum and proportionality between the blazars MeV gamma-ray fluxes and TeV–PeV neutrino flux, the upper limit on the 1FLE blazar energy-scaled neutrino flux is determined to be 1.64 × 10 −12 TeV cm −2 s −1 at 90% confidence level. This upper limit is approximately 1% of IceCube’s diffuse muon–neutrino flux measurement. 
    more » « less
  5. Abstract The diffuse flux of cosmic neutrinos has been measured by the IceCube Observatory from TeV to PeV energies. We show that an improved characterization of this flux at lower energies, TeV and sub-TeV, reveals important information on the nature of the astrophysical neutrino sources in a model-independent way. Most significantly, it could confirm the present indications that neutrinos originate in cosmic environments that are optically thick to GeV–TeV γ -rays. This conclusion will become inevitable if an uninterrupted or even steeper neutrino power law is observed in the TeV region. In such γ -ray-obscured sources, the γ -rays that inevitably accompany cosmic neutrinos will cascade down to MeV–GeV energies. The requirement that the cascaded γ -ray flux accompanying cosmic neutrinos should not exceed the observed diffuse γ -ray background puts constraints on the peak energy and density of the radiation fields in the sources. Our calculations inspired by the existing data suggest that a fraction of the observed diffuse MeV–GeV γ -ray background may be contributed by neutrino sources with intense radiation fields that obscure the high-energy γ -ray emission accompanying the neutrinos. 
    more » « less