skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Outcomes and risk factors for delayed-onset postoperative respiratory failure: a multi-center case-control study by the University of California Critical Care Research Collaborative (UC3RC)
Abstract Background Few interventions are known to reduce the incidence of respiratory failure that occurs following elective surgery (postoperative respiratory failure; PRF). We previously reported risk factors associated with PRF that occurs within the first 5 days after elective surgery (early PRF; E-PRF); however, PRF that occurs six or more days after elective surgery (late PRF; L-PRF) likely represents a different entity. We hypothesized that L-PRF would be associated with worse outcomes and different risk factors than E-PRF. Methods This was a retrospective matched case-control study of 59,073 consecutive adult patients admitted for elective non-cardiac and non-pulmonary surgical procedures at one of five University of California academic medical centers between October 2012 and September 2015. We identified patients with L-PRF, confirmed by surgeon and intensivist subject matter expert review, and matched them 1:1 to patients who did not develop PRF (No-PRF) based on hospital, age, and surgical procedure. We then analyzed risk factors and outcomes associated with L-PRF compared to E-PRF and No-PRF. Results Among 95 patients with L-PRF, 50.5% were female, 71.6% white, 27.4% Hispanic, and 53.7% Medicare recipients; the median age was 63 years (IQR 56, 70). Compared to 95 matched patients with No-PRF and 319 patients who developed E-PRF, L-PRF was associated with higher morbidity and mortality, longer hospital and intensive care unit length of stay, and increased costs. Compared to No-PRF, factors associated with L-PRF included: preexisiting neurologic disease (OR 4.36, 95% CI 1.81–10.46), anesthesia duration per hour (OR 1.22, 95% CI 1.04–1.44), and maximum intraoperative peak inspiratory pressure per cm H 2 0 (OR 1.14, 95% CI 1.06–1.22). Conclusions We identified that pre-existing neurologic disease, longer duration of anesthesia, and greater maximum intraoperative peak inspiratory pressures were associated with respiratory failure that developed six or more days after elective surgery in adult patients (L-PRF). Interventions targeting these factors may be worthy of future evaluation.  more » « less
Award ID(s):
1934568
PAR ID:
10349700
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BMC Anesthesiology
Volume:
22
Issue:
1
ISSN:
1471-2253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Prior diagnosis of heart failure (HF) is associated with increased length of hospital stay (LOS) and mortality from COVID-19. Associations between substance use, venous thromboembolism (VTE) or peripheral arterial disease (PAD) and its effects on LOS or mortality in patients with HF hospitalised with COVID-19 remain unknown. Objective This study identified risk factors associated with poor in-hospital outcomes among patients with HF hospitalised with COVID-19. Methods Case–control study was conducted of patients with prior diagnosis of HF hospitalised with COVID-19 at an academic tertiary care centre from 1 January 2020 to 28 February 2021. Patients with HF hospitalised with COVID-19 with risk factors were compared with those without risk factors for clinical characteristics, LOS and mortality. Multivariate regression was conducted to identify multiple predictors of increased LOS and in-hospital mortality in patients with HF hospitalised with COVID-19. Results Total of 211 patients with HF were hospitalised with COVID-19. Women had longer LOS than men (9 days vs 7 days; p<0.001). Compared with patients without PAD or ischaemic stroke, patients with PAD or ischaemic stroke had longer LOS (7 days vs 9 days; p=0.012 and 7 days vs 11 days, p<0.001, respectively). Older patients (aged 65 and above) had increased in-hospital mortality compared with younger patients (adjusted OR: 1.04; 95% CI 1.00 to 1.07; p=0.036). Prior diagnosis of VTE increased mortality more than threefold in patients with HF hospitalised with COVID-19 (adjusted OR: 3.33; 95% CI 1.29 to 8.43; p=0.011). Conclusion Vascular diseases increase LOS and mortality in patients with HF hospitalised with COVID-19. 
    more » « less
  2. Background The United States has experienced high surge in COVID-19 cases since the dawn of 2020. Identifying the types of diagnoses that pose a risk in leading COVID-19 death casualties will enable our community to obtain a better perspective in identifying the most vulnerable populations and enable these populations to implement better precautionary measures. Objective To identify demographic factors and health diagnosis codes that pose a high or a low risk to COVID-19 death from individual health record data sourced from the United States. Methods We used logistic regression models to analyze the top 500 health diagnosis codes and demographics that have been identified as being associated with COVID-19 death. Results Among 223,286 patients tested positive at least once, 218,831 (98%) patients were alive and 4,455 (2%) patients died during the duration of the study period. Through our logistic regression analysis, four demographic characteristics of patients; age, gender, race and region, were deemed to be associated with COVID-19 mortality. Patients from the West region of the United States: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming had the highest odds ratio of COVID-19 mortality across the United States. In terms of diagnoses, Complications mainly related to pregnancy (Adjusted Odds Ratio, OR:2.95; 95% Confidence Interval, CI:1.4 - 6.23) hold the highest odds ratio in influencing COVID-19 death followed by Other diseases of the respiratory system (OR:2.0; CI:1.84 – 2.18), Renal failure (OR:1.76; CI:1.61 – 1.93), Influenza and pneumonia (OR:1.53; CI:1.41 – 1.67), Other bacterial diseases (OR:1.45; CI:1.31 – 1.61), Coagulation defects, purpura and other hemorrhagic conditions(OR:1.37; CI:1.22 – 1.54), Injuries to the head (OR:1.27; CI:1.1 - 1.46), Mood [affective] disorders (OR:1.24; CI:1.12 – 1.36), Aplastic and other anemias (OR:1.22; CI:1.12 – 1.34), Chronic obstructive pulmonary disease and allied conditions (OR:1.18; CI:1.06 – 1.32), Other forms of heart disease (OR:1.18; CI:1.09 – 1.28), Infections of the skin and subcutaneous tissue (OR: 1.15; CI:1.04 – 1.27), Diabetes mellitus (OR:1.14; CI:1.03 – 1.26), and Other diseases of the urinary system (OR:1.12; CI:1.03 – 1.21). Conclusion We found demographic factors and medical conditions, including some novel ones which are associated with COVID-19 death. These findings can be used for clinical and public awareness and for future research purposes. 
    more » « less
  3. Prescribed fires often have ecological benefits, but their environmental health risks have been infrequently studied. We investigated associations between residing near a prescribed fire, wildfire smoke exposure, and heart failure (HF) patients’ hospital utilization. Methods: We used electronic health records from January 2014 to December 2016 in a North Carolina hospital-based cohort to determine HF diagnoses, primary residence, and hospital utilization. Using a cross-sectional study design, we associated the prescribed fire occurrences within 1, 2, and 5 km of the patients’ primary residence with the number of hospital visits and 7- and 30-day readmissions. To compare prescribed fire associations with those observed for wildfire smoke, we also associated zip code-level smoke density data designed to capture wildfire smoke emissions with hospital utilization amongst HF patients. Quasi-Poisson regression models were used for the number of hospital visits, while zero-inflated Poisson regression models were used for readmissions. All models were adjusted for age, sex, race, and neighborhood socioeconomic status and included an offset for follow-up time. The results are the percent change and the 95% confidence interval (CI). Results: Associations between prescribed fire occurrences and hospital visits were generally null, with the few associations observed being with prescribed fires within 5 and 2 km of the primary residence in the negative direction but not the more restrictive 1 km radius. However, exposure to medium or heavy smoke (primarily from wildfires) at the zip code level was associated with both 7-day (8.5% increase; 95% CI = 1.5%, 16.0%) and 30-day readmissions (5.4%; 95% CI = 2.3%, 8.5%), and to a lesser degree, hospital visits (1.5%; 95% CI: 0.0%, 3.0%) matching previous studies. Conclusions: Area-level smoke exposure driven by wildfires is positively associated with hospital utilization but not proximity to prescribed fires. 
    more » « less
  4. BackgroundAlthough conventional prediction models for surgical patients often ignore intraoperative time-series data, deep learning approaches are well-suited to incorporate time-varying and non-linear data with complex interactions. Blood lactate concentration is one important clinical marker that can reflect the adequacy of systemic perfusion during cardiac surgery. During cardiac surgery and cardiopulmonary bypass, minute-level data is available on key parameters that affect perfusion. The goal of this study was to use machine learning and deep learning approaches to predict maximum blood lactate concentrations after cardiac surgery. We hypothesized that models using minute-level intraoperative data as inputs would have the best predictive performance. MethodsAdults who underwent cardiac surgery with cardiopulmonary bypass were eligible. The primary outcome was maximum lactate concentration within 24 h postoperatively. We considered three classes of predictive models, using the performance metric of mean absolute error across testing folds: (1) static models using baseline preoperative variables, (2) augmentation of the static models with intraoperative statistics, and (3) a dynamic approach that integrates preoperative variables with intraoperative time series data. Results2,187 patients were included. For three models that only used baseline characteristics (linear regression, random forest, artificial neural network) to predict maximum postoperative lactate concentration, the prediction error ranged from a median of 2.52 mmol/L (IQR 2.46, 2.56) to 2.58 mmol/L (IQR 2.54, 2.60). The inclusion of intraoperative summary statistics (including intraoperative lactate concentration) improved model performance, with the prediction error ranging from a median of 2.09 mmol/L (IQR 2.04, 2.14) to 2.12 mmol/L (IQR 2.06, 2.16). For two modelling approaches (recurrent neural network, transformer) that can utilize intraoperative time-series data, the lowest prediction error was obtained with a range of median 1.96 mmol/L (IQR 1.87, 2.05) to 1.97 mmol/L (IQR 1.92, 2.05). Intraoperative lactate concentration was the most important predictive feature based on Shapley additive values. Anemia and weight were also important predictors, but there was heterogeneity in the importance of other features. ConclusionPostoperative lactate concentrations can be predicted using baseline and intraoperative data with moderate accuracy. These results reflect the value of intraoperative data in the prediction of clinically relevant outcomes to guide perioperative management. 
    more » « less
  5. OBJECTIVETo determine the benefit of starting continuous glucose monitoring (CGM) in adult-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) with regard to longer-term glucose control and serious clinical events. RESEARCH DESIGN AND METHODSA retrospective observational cohort study within the Veterans Affairs Health Care System was used to compare glucose control and hypoglycemia- or hyperglycemia-related admission to an emergency room or hospital and all-cause hospitalization between propensity score overlap weighted initiators of CGM and nonusers over 12 months. RESULTSCGM users receiving insulin (n = 5,015 with T1D and n = 15,706 with T2D) and similar numbers of nonusers were identified from 1 January 2015 to 31 December 2020. Declines in HbA1c were significantly greater in CGM users with T1D (−0.26%; 95% CI −0.33, −0.19%) and T2D (−0.35%; 95% CI −0.40, −0.31%) than in nonusers at 12 months. Percentages of patients achieving HbA1c <8 and <9% after 12 months were greater in CGM users. In T1D, CGM initiation was associated with significantly reduced risk of hypoglycemia (hazard ratio [HR] 0.69; 95% CI 0.48, 0.98) and all-cause hospitalization (HR 0.75; 95% CI 0.63, 0.90). In patients with T2D, there was a reduction in risk of hyperglycemia in CGM users (HR 0.87; 95% CI 0.77, 0.99) and all-cause hospitalization (HR 0.89; 95% CI 0.83, 0.97). Several subgroups (based on baseline age, HbA1c, hypoglycemic risk, or follow-up CGM use) had even greater responses. CONCLUSIONSIn a large national cohort, initiation of CGM was associated with sustained improvement in HbA1c in patients with later-onset T1D and patients with T2D using insulin. This was accompanied by a clear pattern of reduced risk of admission to an emergency room or hospital for hypoglycemia or hyperglycemia and of all-cause hospitalization. 
    more » « less